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Abstract

Artificial intelligence problems are solved on

electronic computers by techniques that make heavy use of

address calculation and dynamic management of data storage

space. Optical computing, on the other hand, is normally

associated with numerical problems in which the size of the

data space is fixed and addressing may be handled in a

predictable manner not affected by actual data values. A

criterion is presented for determining the amount of

dynamic storage management required for an expert system

problem and several methods are discussed for eliminating

unnecessary address manipulation by careful choice of data

representation. Major emphasis is placed on the

implementation of the mathematical technique of resolution.

Various resolution strategies are analyzed and the impact

of these strategies on storage management is assessed with

a view to minimizing the complexity of processing.

Finally, novel uses of electro-optical/electronic hybrids

are considered for problems in which the state space grows

drastically or where reversible control strategies are

required to implement search methods.

Subject terms: digital optical computing; optical logic;

artificial intelligence; expert systems; mathematical

resolution.
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1. Introduction

The speed and parallelism inherent In optical

computing has made it an attractive technology for a

variety of computationally intensive problems. Optical

computing has been successfully applied to signal

processing ., equation solving 2 , and digital logic 3 , among

other fields. However, in artificial Intelligence, one of

the most computationally intense fields, only very limited

progress has been made. A breakthrough in this area would

have tremendous benefits, particularly to such programs as

the DARPA Strategic Computing Initiative.

Progress is slow in A.I. because it is qualitatively
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different from the disciplines in which optical computing

is succeeding. It is the intent of this paper to discuss

these differences. Some of them are fundamental and must

be accomodated by any optical AI architecture. Others are

historical, and are the product of methods designed for

implementation on sequential electronic processors. These

can be sidestepped by proper choice of representation and

processing strategy. This paper will present some

examples.

2. History and properties of symbolic computing

Unquestionably, the most profound early influence on

artificial intelligence (at least on the subset called

symbolic computing) was the development of the LISP

programming language by John McCarthy at MIT in the late

1950's4 5. For almost 30 years, LISP has been the "lingua

franca" of symbolic computing and artificial intelligence.

The approaches to most AI problems are so commonly

expressed In LISP that it is difficult to imagine any other

way to deal with them. This mindset must be surmounted if

new technologies such as parallel processing and optical

computing are to be applied to AI problems.

LISP Is a language intended originally for serial

interpretive execution. As such, it has several major

characteristics which mesh well with this environment.

First, the representation of programs is the same as the

*,. - v,. %4 ,4f ~.E~d' ? .,f*d.*.....* *~ .I* -V
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representation of data. LISP is the only high level

language in which a program can legitimately generate new

instructions and execute them "on the fly". While this

feature is little used, the technique of "procedural

embedment", or mixing program fragments in a basically

data-driven problem solution, is used in many AI codes.

Newer generations of LISP are de-emphasizing this

technique. This is fortunate, since optoelectronic

implementation of this feature would be very difficult.

A second property of LISP is a very high level of data

abstraction. Storage management in a LISP program is

handled entirely by the interpreter or runtime system. The

programmer makes no commitment to the size or structure of

the data objects that he manipulates and the locations and

storage relationships of the data entities are unknown to

him. This is a very positive feature to the programmer,

who no longer has to dimension arrays, worry about runtime

stacks or manage data in a highly recursive, dynamic

execution environment. The price that is paid is that a

substantial fraction of the memory space contains

addresses, not data, and that unknown to the programmer,

most of the computation revolves around address

manipulation rather than data examination. Indeed, the

fundamental building block in LISP is the "cons cell",

which contains no data and two addresses. Data-containing

cells are a special case. This dependency on addresses has

even less desirable ramifications for optical computing, as
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we shall see later.

The third significant property of LISP is its tendency

toward recursive rather than iterative solutions to

problems. This is again attractive from a programming

point of view, since most AI problems can be decomposed

into subproblems structurally identical to the original

with less complex data. Recursion is the natural way to

solve these problems. Unfortunately, the implementation of

recursion requires the saving and restoring of a great deal

of control state in a processor. Sequential electronic

processors have no problem with this, but as we shall see,

parallel and optical processors are not well suited to the

management of large amounts of control state.

In summary then, our problem in using optical

computing for AI is not merely to transfer algorithms from

one technology to another, but rather to redevelop concepts

into algorithms in a different technological framework in

which old techniques may in fact be counterproductive. It

should not be surprising that this is a difficult task.

3. Properties of optical computing

One way of conceptualizing algorithms is to view them

as consisting of data manipulation and control. Data

manipulation is the process of combining or rearranging

data values to obtain newer and more useful data values.

Boolean logic, arithmetic, and rearrangement are all
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examples of data manipulation. Control includes the

selection of alternative manipulation and the repetition of

manipulation based on data-dependent conditions. It also

includes the management of the processor state required for

the decomposition of problems into subprograms.

It is in the area of data manipulation that most

optical computing work has been done. If we may call data

manipulation "calculation", then the field cf optical

computing at present is heavily dominated by optical

calculation. Control in optical systems requires

optoelectronic or optoacoustic interfaces and the use of

spatial light modulators to effect selection. Since the

effective use of repetition requires optical gain and state

variables, the use of repetition is limited in most systems

and is replaced by non data dependent replication

(cascading) of hardware components.

A glaring difference between electronic and optical

computers is that in an electronic system, all components

of an algorithm are stored in a uniform way (bit patterns

in memory) and are somewhat interconvertible. By contrast,

in an optical system, the "program" is hardware, addresses

are geometrical or time coordinates, while data values are

optically expressed. Thus taking data dependent action

requires light patterns to modify light flow through

hardware, while address calculation requires light patterns

to affect system geometry - either coordinates or path

lengths. The tools available to do this (spatial light

-,o=I ,I.-.. "1" " , S'""" , " ,' -* ,"" ° vb ,""" ". ""." "r r" t-, -"" . . - " . ." . - ', " . , " .- . " " , ". '
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modulators) are extremely slow compared to data

manipulation and propagation rates. This further Inhibits

the transfer of algorithms from sequential electronic

processors, where control is fast and data manipulation is

slow.

Our task while solving AI problems must therefore be

to eliminate extraneous control interactions and cast the

problems as completely as possible as calculation problems.

The necesary residue of control must be accomodated by an

optical system, but must be handled in a way that minimizes

its impact on performance.

4. Data in symbolic optical computing

Symbolic computing is often described as

"object-oriented". What is meant by this is that the

presence or absence of a particular data object in a

certain context is the most relevant fact. The value of

the data object is much less important - indeed, the object

may not even have a value. In conventional symbolic

computing, the objects present in a certain context are

grouped together in a list, which may be sequentially

searched to determine presence or absence of specific

objects. A list is an inconvenient representation for

optical computing because of the nonequivalence of data and

addresses. A more natural representation is an array of

booleans, with each possible object assigned a fixed

6i .. ,.,..I ",- . --- - K, ." -.. 3" - -
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position. In many AI problems, the universe of possible

data objects is constrained to on the order of 1000 or

less, so this is a feasible approach. The correspondence

between a linked list and a boolean array is shown in

Figure 1. This representation presumes that the order of

elements in the list is not significant.

This simple representation does not allow for objects

with a value. An important special case of valued objects

occurs in the mathematical technique of proof by

resolution. This powerful technique for validating or

invalidating hypotheses requires boolean valued objects.

These objects are arranged in clauses, which are disjuncts

of selected boolean objects. Thus to represent clauses as

boolean arrays requires more than one bit per data object

(a data object is called a "literal" in resolution). Using

two bits per literal allows the representation of the four

states shown in Figure 2. The need for three of these

states is obvious; the fourth state is a byproduct of the

resolution process, and is discussed in detail later. The

particular notation used in Figure 2 is called "double

rail" or "differential" logic and simplifies some logical

operations in resolution. Representations of three simple

clauses are shown in Figure 3 using this notation. In this

discussion, we assume that the discrete data values are

represented by incoherent intensity values, although there

are numerous other possibilities. In an actual

implementation, the choice would depend on the current

.. . *. . .-.. , . . . . .. ,.._. . _ . .. .. .,... .,,'. ,,.... .' ,. ... .. .... .,.o'.*,. • ,.' . .. .
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state of the art in optical device technology.

One additional representational choice remains to be

made. Since our system has both a space and a time domain,

we may express our boolean vector in either of these

dimensions. If we choose the space domain, all literals in

a clause will occur in the same image. As we shall see

later, this eliminates the need for control state variables

during resolution, but limits us to one spatial dimension

for the resolution itself. If a clause is expressed in the

time domain, all literals in the clause occur at the same

spatial location, but at different times (in different

images). This allows two spatial dimensions for the

resolution process, but requires two boolean control

variables per resolved clause to remember the outcome of

the process. If growth of the data space is accomodated in

the time domain, mapping clauses into the time domain would

appear less complex than the spatial alternative, but the

decision will ultimately revolve around the availability of

suitable optical memory for the control state.

One characteristic of AI problems which must be

accomodated by optical computing representations is that

the data space is dynamic. Unlike numerical problems which

have a fixed number of variables whose values change, AI

problems generate additional contexts and groupings of

objects as the problem is being solved. There are

basically two dimensions in which growth can occur: time

and space. Growth in time implies that when images

F ., , . ..-..• ... . ..; ; .- -- , . ., .. ... - ., .., --, ...- -.



interact during data manipulation, new images are created

which supplement, not replace, the originals. These new

images must be time sequenced in an optical pipeline with

pre-existing images to define the new state of the

computation. This requires that the pipeline get longer as

computation proceeds. Alternatively, the new images can be

spatially adjoined to the old ones, and the amount of area

devoted to the image may increase. Unfortunately, the

amount of potential growth in the data space is so large

that this approach may often lead to exceeding hardware

limitations.

AI problems (such as game playing) in which each

decision requires both generation of a new state space and

retention of the old are particularly susceptible to data

space explosion. These problems use a reversible control

strategy which must allow backup to earlier states of the

solution while exploring for an answer. Resolution is a

more attractive first problem for optical implementation

because it uses irreversible control strategies. These do

not have as pronounced a data growth.

Al problems can be categorized on a control/data space

map as shown in Figure 4. Conventional numerical problems

are shown in this figure for comparison. The data

complexity axis can be classified into four regions

according to the type of data manipulation:

Substitution: the state space is fixed, and
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computation substitutes new values for old.

Replacement: computation generates a new state space

which replaces the old.

Augmentation: compuzation generates new elements to

add to the existing state space.

Replication: computation creates a new state space

but all old state spaces must be retained.

Problems toward the left side of the map are most

amenable to optical implementation. This includes some,

but not all, forms of resolution.

5. The process of resolution and its optical implementation

Resolution is a mechanical process for detecting

contradiction within a family of assertions. It may be

used for proof of an assertion by showing that the negation

of the assertion contradicts the other assertions. A

detailed discussion of resolution is beyond the scope of

this paper, but several excellent references exist 6 ,7. The

process may be summarized as follows:

(1) The original set of axioms (rules) are converted

into clause form. In clause form, logical implication
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is removed from the rules using the equivalence of the

forms (P -- > Q) and (P' + Q). The rules are placed in

a canonical disjunctive form. Figure 5 illustrates

some simple rules transformed into clauses. This

process need only be performed once for a given

problem domain. All clauses are assumed to be true.

(2) The assertion to be proven is negated and

converted to clause form.

(3) Pairs of clauses are selected and their resolvent

formed. A pair of clauses can be resolved when

exactly one literal occurs in both clauses, asserted

in one and denied in the other. This is an

application of the logical tautology: (A+B)(A'+C) -->

(B+C). The resolvent is the union of the source

clauses with the single contradicting literal removed.

(4) Step 3 is repeated using both the original

assertions and new resolvents until (a) no new

resolvents can be formed; or (b) a resolvent is

formed with no literals at all. It is also possible

that the computation is nonterminating. Case (b) is

the desired case, and shows that the original

assertion was true.

The key to resolution lies in how the pairs of clauses

• -.-.•,- -,/ '. r '-.-S ,* '''.,'''.',';,.., , %.. , ..-aa,."< -,.X %-,- .-'....-.....5 ..- "..-.'- -.. -.. ,-.'.-.
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are selected in step 3. A number of different methods

exist. Central to all of them is that most pairs of

clauses cannot be resolved because they are not in the

required form. Thus an intermediate step is to determine

whether or not a particular pair of clauses can be

resolved. Clearly, the answer for any pair of clauses is

independent of the answer for any other pair. Thus all

possible pairs of clauses can be checked in parallel. This

process is illustrated in Figure 6 for time serial clauses

and in Figure 7 for spatially parallel clauses. This has

been discussed in more detail elsewhere 8 . In both cases,

a light pattern is produced for each literal which may be

decoded into the four double rail values discussed earlier.

This is shown in Figure 8.

A pair of clauses may be resolved if exactly one

literal in the vector is in the contradiction state. The

resolvent has in fact already been formed by the checking

process, except that the contradicted literal must be

output in the "not present" state in order to participate

in further resolution. This may be accomplished using a

spatial light modulator to remove the literal from the

output.

A major problem in resolution is that only a small

fraction of potential resolvents meet the single

contradiction requirement. Thus after a vector or matrix

of potential resolvents is formed optically, only a few of

the results are useful. Many passes through the resolvent
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forming mechanism are required In order to solve a problem,

and if the useless clauses are not discarded, the growth of

the data space will be exponential with a very large base.

We have discussed how to determine that a particular clause

is useless - our problem now is how to eliminate the

useless clauses. Functionally, we need to arrange the

result matrix to squeeze out the useless clauses, then

adjoin the remaining elements with the original clause

matrix to form the next data set for input to the

resolution mechanism. With present technology, this will

require another spatial light modulator or electro-optic

conversion.

The approach to resolvent compaction will vary

depending on whether time-serial or spatially parallel

notation is used. In time serial notation, the

one-contradiction condition is detected by the use of a

pair of control variables C (contradiction) and X (excess

contradictions) calculated by an inductive formula. If

C<O> - 0 (1)

X<o> - 0

and

C<n> - (T<nY)*(F<n>) + \C<n-l>) (2)

X<n> - (T<n>)*(F<n>)*(C(n-l>) + (X<n-l>)

then a resolvent is acceptable iff Csfinal> I and

X<final> - 0. T and F are the true and false components of

the double-rail notation for each literal, and the

-, . ,,' ,"- v . - " -*v -. . . . .. .. , ", "'".-" " . ."'. -. 1 -i' '' ' .i .-,
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operations * and + are boolean conjunction and disjunction,

respectively. Since X may become true as late as the

passage of the last literal through the resolvent

mechanism, the activation of the SLM may not begin until

that time. Thus the SLM must be located some distance from

the optical logic which forms the resolvent. In order to

"squeeze out" unacceptable resolvents from the result, one

SLM per result must be provided. This SLM will either

perform no operation on the output images (If the

associated resolvent is acceptable), or will move all

remaining resolvents up one position (if the associated

resolvent is unacceptable). This could be a rather large

number of SLM's. A one dimensional example is shown in

Figure 9. In this figure, each SLM squeezes out the

corresponding clause if it Is invalid. The bottom clause

need never be squeezed out.

If spatially parallel notation is used, the acceptance

criterion can be computed in parallel using a tree

structure to capture the necessary contradiction condition.

Denoting the level In the tree by the first index, we have

C<1,1> - (T<i>)*(F<I>; (3)

X<,i> = 0

Then for each succeeding level we have

C<n,i> - (C<n-l,21>) + (C<n-i,21+I>) (4)

X<n,i> - (C<n-i,2i>)*(C<n-I,2i+1:>) + (X, n-i,2i>)

+ (X<n-1,2i+I>)

e. o •r 2 . - ,• . .. o "- "4 ' - 'o . . • " o - " , ' " f •
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The condition for success is that C<final,0> - 1 and

X<final,0> - 0. This is the same condition as derived for

the time-serial case, but no storage is required. As in

any binary tree, the number of levels is log 2 of the number

of possible literals, perhaps 8-10 for reasonable cases.

With spatially parallel notation, one dimension of the

image is devoted to the literals themselves. The potential

resolvents between a clause and an array of clauses are

distributed across the other dimension. Thus while the

same sort of compaction with SLM's is required as in the

time-serial case, the compaction is uniform in one

dimension. This will allow simpler SLM architecture. In

particular, 2k  resolvents can be compacted using k SLl's

as shown in Figure 10. The SLM's are arranged in order

such that the first SLM can move a clause one position,

while the kth SLH can move a clause by 2k-1 positions.

Each succeeding SLM requires only half the independent

elements as its predecessor. Control for the SLM can be

electronically derived from the sequence of (C,X) bits for

the various resolvents.

6. Comparison of resolution strategies

The remaining major issue in resolution is how the

pairs of clauses to be resolved are selected. The most

straightforward strategy is breadth-first resolution. In

this strategy, the initial clauses are considered the "base

.' ., . -, . - ' " , " . , * . . . , '. . " . " , " " "% , " " .' '. .' ., . ' ., . .. .. - - •% -
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generation". Generation 1 is formed by attempting to

resolve each member of the base generation with all other

members of the base generation. Generation 2 is formed by

resolving each member of generation 1 with all the members

of generation I and the base generation. This process is

repeated for each succeeding generation.

Breadth-first resolution is complete, in the sense

that it will find a contradiction if one exists, but is

very expensive in storage and computing time. A normal

assumption in resolution is that the original axioms do not

contain a contradiction; if one exists, it is generated by

the negation of the theorem to be proved. Thus, generating

resolvents between the original axioms does not directly

advance the search for a contradiction. The assumption of

consistency of the original axioms leads to the second

stra tegy.

In set-of-support resolution, the base generation

contains the original axioms, and generation 1 contains

only the negated hypothesis. Resolution then proceeds in a

breadth-first manner, but since generation I has only one

clause, relatively few clauses are produced in generation

2. This approach produces more generations, but fewer

clauses in each, and is usually more efficient due to the

special significance of the negated hypothesis.

Set-of-support resolution is also guaranteed to find a

contradiction if one exists.

A subset of breadth-first resolution is linear-input



19

resolution. In this strategy, the next generation is

produced by resolving the current generation only against

the base generation. Thus one of the parents of each

resolvent is static and fixed. Linear-input is an

attractive and commonly used strategy, but is not complete.

Its appeal for optical implementations is that the base

generation could be captured in transmission masks, and

only the generated resolvents need be stored in images.

Further, since each generation of resolvents is replaced by

a new generation, there is little or no storage growth.

Although it is an incomplete strategy, linear-input

resolr tion may be useful in problems with many facts

(single literal clauses) and few implications (multiple

literal clauses) since it is the resolution of single

literal clauses which ultimately leads to final

contradiction (null clauses).

An interesting strategy related to linear-input

resolution is ancestry-filtered resolution. In this

strategy, which is complete, one of the pair of clauses to

be resolved must be an ancestor of the other clause. This

offers a considerable reduction in the number of resolvents

to be considered, but requires parentage information about

clauses. In conventional systems, this is done with linked

lists, but this is not optically feasible. We have not

examined this strategy in detail, but it is possible that

some amount of clause replication in redundant data spaces

may substitute for list structure, and make this approach
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feasible. It is clear that the control and data management

problems of this strategy are the worst of the four

strategies discussed.

7. Electro-optic hybrids

At the present time, it is difficult to see how a

completely optical resolution system could be built. The

primary areas of difficulty are optical gain in a system

with a large number of bits, and in optically accomodating

the growth of the state space. These problems could be

gracefully solved, along with some of the control problems

mentioned earlier, by the use of electro-optical

conversion. It appears that a single type of device would

suffice - an optically addressable memory. Such a device

would consist of a 2-D array of cells, each containing a

photodetector, one bit of electronic memory, and a light

emittting diode (LED). Upon electronic command, the device

would load the array of bits from an image, or generate

such a image via the LED's. The memory could also be read

or written electronically. Such a device could be used for

gain, for data input and output, and for control, with

suitable electronic interfaces. Portions of such devices

already exist in CCD arrays and solid-state cameras. The

introduction of LED's into such devices would be a logical

J. step in the evolution of GaAs technology.

The use of an optically addressable memory in

"=
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resolution would eliminate much of the need for SLM's,

since the compaction of resolvents mentioned earlier could

be achieved electronically by rewriting the memory.

Inclusion of shift register circuitry in the memory would

even allow the compaction to be done in parallel.

With data stored electronically, expansion of data

storage need not be accomodated in the optical portion of

the system. Instead, bulk electronic memory could be

substituted. Further, introduction of the initial

resolution clauses into the system could use the same

mechanism.

8. Summary

Our purpose in this paper has been to review the

essentials of symbolic computing, demonstrate list-free

notation for at least one problem of interest, and show the

feasibility of optical techniques for a significant portion

of this problem.

The problem of mathematical resolution was discussed

from the standpoint of basic operators, control complexity

and data management complexity. The basic operations

required are clearly feasible with optical technology,

while control and data management require either advances

in technology or use of electronic hybrids. Our future

work will involve quantifying the magnitude of these issues

for actual problems and attempting to match specific
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optical and electro-optical technologies to their solution.

9. Acknowledgements

Publication of this work was supported by a grant from

the Air Force Office of Scientific Research. The

underlying motivation came from a talk by John A. Neff,

Defense Advanced Research Projects Agency.

S.



.. 1 W W~t_1f r W . itin .m sntrwn~ t InW rwu~nh VV Wr. rWV VVVV W V- p v-a VXVW rs '-a X_

II

23

10. References

1. B. Moslehi, J.W. Goodman, M. Tur, and H.J. Shaw,

"Fiber-Optic Lattice Signal Processing", Proc. IEEE 72(7),

909 (1984).

2. S.H. Lee, "Optical Analog Solutions of Partial

Differential and Integral Equations", Opt. Eng. 24(1),

041 (1985).

3. A.A. Sawchuk, and T.C. Strand, "Digital Optical

Computing",Proc. IEEE 72(7), 758 (1984).

4. J. McCarthy, "Recursive Functions of Symbolic

Expressions and Their Computation by Machine", Comm. ACM

3(4), 184 (1960).

5. P. H. Winston and B.K.P. Horn, LISP, Addison Wesley,

Reading (1981).

6. N. Nilsson, Principles of Artificial Intelligence,

Tioga, Palo Alto (1980).

7. P.H. Winston, Artificial Intelligence, Addison Wesley,

Reading (1984).



24

8. R.A. Schmidt and W.T. Cathey, "Optical

Implementations of Mathematical Resolution", Applied

Optics, 26(8), nnn (1987).

I''''../)"...':."., i ?. " :" ..:'',.'. ..-'...,. , ,'., .: -,. • ,,



25

Figure 1 - Lists as Boolean Arrays

Figure 2 - Differential Boolean Logic

Figure 3 - Clauses in Differential Form

Figure 4 - Control and Data Complexity of Algorithms

Figure 5 - Inference Rules in Clause Form

Figure 6 - Time Serial Resolution

Figure 7 - Spatially Parallel Resolution

Figure 8 - Time Serial Literal Formation

Figure 9 - Time Serial Resolvent Compaction

Figure 10 - Parallel Resolvent Compaction



26

Rodney A. Schmidt received his B.S.E.E from M.I.T. in

1966 and his M.S.E.E. and Ph.D. from Stanford University

in 1971. Hw worked for ESL, Inc. in Sunnyvale, Ca. from

1971 to 1976. He was an assistant professor at the

University of Denver from 1976 to 1978, and was Manager of

Software Engineering at Denelcor from 1978 to 1982. Since

1982 he has been an assistant professor of computer science

at the University of Colorado at Denver. His technical

interests include artificial intelligence, parallel

computing and robotics.

Nell.



27

W. Thomas Cathey has been at the University of Colorado

for 18 years, and is now Professor of Electrical

Engineering and Director of the Center for Optoelectronic

Computing Systems. Previously, he was at the Autonetics

Research Center of Rockwell International.

Dr. Cathey's degrees are from the University of South

Carolina and Yale University. His research has been in the

fields of holography, adaptive optical arrays, imaging and

optical information processing. Recently, his work has

been in the areas of optical computing, imaging systems,

and optical sensing systems.

---------------------------------------.t..



A z
11000000000000000000000001

STA Z
00000000100100000011000000

linked list boolean array
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dibit interpretation

00 - not present
01 - false (negated)
10 * true (asserted)
11 - contradiction

(both asserted
and negated)

Figure 2 - Differential Boolean Logic



A D
A + B'+ D 1001 00 10

B + D 00 1000 10

A + D 100000 10

Figure 3 - Clauses in Differential Form
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inference clause form

A'B *D A+B'+D

B' ---II o D B+D

A.--oo. D A'+D

A+ B- *D A'+ C
B'+C

A--*o CD A'+ C
A'+D

Figure 5 - Inference Rules in Clause Form
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OPTICAL IMPLEMENTATIONS
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Mathematical resolution is an algorithmic technique for reasoning from

facts expressed in clause form to a conclusion. The technique is normally

implemented on electronic computers with list-processing languages. This

paper presents data representation and processing techniques for a parallel

implementation using array-based optical logic. Implementations up through

the quantified propositional calculus are presented, and the operations of resol-

vent formation, unification and search are discussed. It is shown that a largely

parallel formulation of resolution is possible, and optical technologies are sug-

gested to implement this formulation.
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INTRODUCTION

Optical computing is an attractive technology for a variety of problems

due to its speed and parallelism. It has been successfully applied to signal pro-

cessing, equation solving, and digital logic, as well as to other fields [1-4]. The

application of optical computing to artificial intelligence (A. I.) has been lim-

ited, due to the qualitatively different nature of A. I. problems. Areas in which

optical computing has been successful are ones in which the control of algo-

rithms is not data-dependent. A. I. is at the opposite end of the computational

spectrum. In A. I., the flow of control through an algorithm is dominated by

the data, especially in conventional A. I. languages such as LISP. This creates

problems for optical implementations, because optically controlled switching of

optical data typically requires opto-electronic data conversion and uses rela-

tively slow spatial light modulators. A practical optical implementation must

minimize these interactions.

We focus here on a particular subset of A. I., namely expert systems, and

on a particular (albeit general) method within the subset. The method is

mathematical resolution, a method for deductive reasoning about facts and

hypotheses. Mathematical resolution is an algorithmic technique for mechaniz-

ing the deductive reasoning process so that it can be mechanically carried out

by a computer. The technique is extremcly computer-intensive, and also gen-

erates large amounts of intermediate data during the derivation of a proof.

Many aspects of the process are inherently parallel, and this fact. makes optical

implementations attractive. An unattractive feature is the requirement to

manage the data space whose size changes in a data-dependent fashion. The

..R
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challenge is to design a data representation and a set of operations which

implement mathematical resolution with as little interaction as possible

between control and data, and then implement the design using optical com-

ponents.

MATHEMATICAL RESOLUTION

Mathematical resolution uses boolean logic to generate new statements

through deductive reasoning from an initial statements set. Normally, a

hypothesis is provided by showing that its negation contradicts the original

fact set. In resolution, a statement or rule of inference is represented in a spe-

cial form called a clau.9e. A clause is a disjunction of terms, each called a

literal. Since in ordinary logic, rules are represented by logical implication, a

preprocessing step is required to transform ordinary statements and rules into a

form suitable for resolution. This process need only be performed once for a

given problem area and is not covered here. Several excellent references exist

[5-7]. As an example of a transformed rule, the implication (P - G) transforms

by the rules of Boolean algebra into the clause ( P' + G).

The next process in mathematical resolution is resolvent formation. In

this process, new statements are derived from sets of old statements. For

example, the set of clauses {( P' + G) ; G'} resolve to generate the new

statement { P'} . The new statements are added to the rule base and resolvent

generation continues until the null clause is generated or no new clauses are

possible. If the null clause is generated, the original hypothesis was true, since

its negation produced a contradiction.

• ° " . . " . d d" , . " • ', , . • d" ' a , -' ' " ' -" " - " d' ' " ." ''' ° ' '., €' ''° •a " I
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In practical applications of resolution, hundreds or thousands of resolvents

must be generated before a problem is solved. The order in which the resol-

vents are generated may have a dramatic effect on how many resolvents are

required and how long the process takes. At the same time, some orderings

require extremely sophisticated algorithms for control, while others are rela-

tively straightforward. A tradeoff must be made between efficiency and com-

plexity, especially for optical implementations where complex control is very

difficult.

The technique of mathematical resolution can be applied to several

different levels of mathematical logic. Each higher level adds complexity to the

process but allows the representation of more interesting reasoning problems.

Optical implementation of the lowest level seems straightforward, but restricts

the problem domain to rather trivial problems. Implementat;on of the highest

level poses severe design problems which at present do not appear to have easy

solutions. Our expectation is that at an intermediate level interesting problem

domains can be handled without taking present optical methodologies beyond

their breaking points.

The lowest level of mathematical logic considered is the propo8itional cal-

cuius. In the propositional calculus, the literals in clauses are Boolean con-

stants, in either asserted or negated form. The clause example given earlier

was drawn from the propositional calculus. Mathematical resolution in the

propositional calculus is straightforward. Two clauses resolve if and only if

exactly one literal occnrs in asserted form in one of the clauses and in negated

form in the other clause. Thus (( P' + Q) ; P} resolve to {Q} . If more than

one literal meets the test, then the clauses do not resolve. Thus
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{( P' + Q) ; (P + Q' )} do not resolve. This latter case makes sense, since the

two clauses represent (P - Q) and (Q - P) , from which no new facts can be

deduced. If zero literals meet the test, then likewise no resolvent exists. Thus

{( P' + Q) ; P'} do not resolve, since no literal occurs in one clause asserted

and in the other negated. This corresponds to the logical situation that

(P - Q) and ( P' ) do not permit further deduction.

The next level of mathematical logic is called the quantified propositional

calculus. In the quantified propositional calculus, the literals In a clause are

Boolean valued functions, called predicates. Each predicate has zero or more

arguments which may be constants or variables. This formulation allows the

specifications of general rules which relate different predicates of variables.

The variables themselves are not Boolean valued, nor are the constants, The

domain of the predicate functions may be any discrete or continuous number

space. A sample clause in the quantified propositional calculus might be

P'(x) + Q(z)). In this clause, P and Q are predicates, and the variable x is

the argument for each predicate. Resolvent formation in the quantified propo-

sitional calculus involves an additional step. A set of clauses can be resolved if

exactly on literal is asserted in one clause and negated in another after the pro-

cesa called unification is performed.

Unification involves the trial substitution of constants for variables, or

variables for variables in an attempt to make two clauses more similar. If a

substitution can be found which makes two clauses meet the basic resolution

requirement, then a resolvent can be formed. For a given pair of clauses,

several such substitutions may exist, each yielding a different resolvent. A

sample unification and resolution might be (l"(,) + Q(.)) Q'(.41} , where

5N'|

*.X.~ .X~ .... '~. ,~ A~kX..' ".A1



5

.4 is a coned ant. This pair resolves to "( A . The unif,,ing lubt it lt on -

z - A . vieldin g the clartie pair ( V(I ) + Q 4)) 1-Q ( .4 )) These meet the

normal resolution condition. and generate the resoivent shown ahome

Ileolution in the quantified propositional calculus is sutbanti:ulk more

complex than in the propositional c:dculus. Not only do %arioij urit in-ub-

stitutions have to he explored, but predicate,% can occ ur more than once in a

clause, each time with diterent argument,. Further. wh ile the order of predli-

cates in a clause is not significant, the order of arguments to predicate func-

tions very definitelv is significant. All of these issues lead to more complex

represent at ions and operat ions.

The most general form of mathematical logic used in resolution is the first

ordcr predicate calculus. This notation allows not only constants, predicates

and variables, but also arbitrary functions as arguments of predicates. These

functions allow real-world relationships between variables to be modeled. The

potential complexity of handling these functions optically is enormous, and the

effort reported here does not address the first order predicate calculus. The

major consequence of ignoring the first order predicate calculus is to either

limit the size of problems which can be handled, or to drastically increase the

number of clauses required to represent. the problem in the quantified proposi-

tional calculus.

In any of the logic schemas described above, the proof process is interac-

tive. In most cases, the resolvents directly derivable from the original facts and

rules (the base set), do not themselves solve the problem. The resolution pro-

cess must be repeated using the new resolvents to produce yet another genera-

tion of resolvents. This iteration of resolvent generations may be repeated

-,
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do ten- of times before t he on gin A hv poiheh'is i proved T here are, htowve

several :dtvrnat Ive% in how the nlext generat ion of re-tolventI I% proditred

Several of he~e appear to h ave pot e nial for optic~ iiitmeritt lol

I i breradth-irAl re'ol tit ion. generat ion 0 (1 he hase set Ico n i n- all the orn-

ginal facts aid( riles, Including the negtion of the hi pothlesis to br proved.

Gen'ferat ion I contains :ill the clauses dlirectly (Ieduibi~tlf fromt generationt 0.

Generat ion k is produrced bY resolv inrg generat ion k-1 I ia nt t he union1 of ge o-

erat ions 0. 1 . ..k- I. This st rat eq% will ex t aust i vel produce .1ll possI he rsol

v-ents. an1d( will prove the hvypot hesis if It is true. Trhe quaintity of resolketts

gencrated is large and ntav exceed any reasonarble Irmplemnent at ion limit s,

In I'ienr- ripu f-form resoluct ion, genteral ions 0 aind I are as Ii breadthI- first

resolution. buit generation k is prodIucedI ly resolving generation k-I1 only

against generatiOn 0. This has two bentefits. first, the nunmber of resolkents

per generat Ion is smaller; and second, one of tie component% of each resoluitiofl

is fixed. Opt ically, t his would permit generation 0 to be encodedl in a qua-1-

static mask such as a liquidI crystal trask, rat her than requiring an active Opt I

cal source. 'ifort cnat clv. linea-r-input-form resolution is not guarant eedl to

findl thle answer. even if it exists.

In ict-of-suapport resolution, generation 0 contain4 the original facts and

rules, toCIiuive of the negatedI hN .potheses. Gevnerationi k is produced by resolv-

ing generation k-I against the union of generations 0, 1 . . . k-I. This strategy

twill prove the hypothesis if it is true, but will produce fewer resolvents per gen-

erat ion. More generations may he required tha-n in breadt h- first resolution, but

the silze of the generations is more ma-nageable.
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A last possible form of resolution is ancestry-filtered resolution. In this

form, generation 0 is the original set of facts and rules, and generation 1 is

chosen in any of the ways previously described. However, each resolvent in

generation I is associated with a table of 2 clauses which are its ancestors.

More generally, in generation k, each resolvent is associated with a table of 2 k

clauses which are all its ancestors. Generation k is formed by resolving each

clause in generation k-I with either the base set (generation 0) as in linear

inputt form. or with its own ancestors from its associated table. This strategy is

gliaratiteed to yield a solution if one exists, but requires more complex control

than other strategies. Also, the length of the ancestor table for each resolvent

double- earh generation.

OPTICAL DATA REPRESENTATIONS

In the propoitional calculus, clauses may be conveniently represented by

bit arrays,. since each possible constant literal may occur at most once in each

claue. We may denote each possible constant by a bit pair, with 00 = not

occurring. 01 = asserted, and 10 = negated. The fourth possibility. 11, can be

ied during reolution to detect contradiction. Figure I shows the represent.a-

tion of a sample pair of cla!,ies in the propositional calculus. The length of the

bit vector representing a clause ik twice the number of total constants required

in the prol)lem. In an optical imph mentation, the dimension of the bit vector

may be either time or space. Presenting all compone~its of the vector simul-

taneously has the advantage that less optical memory is required during the

resolution process, and that the time domain is preserved for holding the grow-

ing number of resolvents produced in each new generation. Presenting the

%I p.



components of the vector serially in time requires less transverse connection in

the optical hardware.

The optical implementation could take several forms. To illustrate one

technique for performing operations in the propositional calculus, consider Fig.

2. This figure shows the dibit representation of the resolution of A + B' and B

+ C. The possible dibits are shown in Fig. 2(a) where the two squares associ-

ated with each possibility can be thought of as being light or dark. The two

clauses in Fig. 2(b) are superimposed in such a way as to cause the light pat-

terns to overlap as in Fig. 2(c). The contradiction is removed to produce the

final answer in Fig. 2(d). The dibits of Fig. 2(a) could be represented by laser

diodes or light emitting diodes in an input as shown in Fig. 3. The resolution

of Fig. 2(b) could be performed as in Fig. 3 where one dibit is rotated before

being spread with cylindrical lenses. The superposition achieved with the

transmission mask and prisms of Fig. 3 is represented (transposed) in Fig. 1(c).

Holographic elements also could be used. To remove the contradiction, either

an optical-to-electrical conversion is required or, ultimately, optical logic ele-

ments could be used. One two-dimensional means of removing conflicts would

be a liquid crystal array. The cells of the liquid crystal would be transmissive

unless both dibits of a literal are illuminated. In that case, an AND operation

would cause those cells to switch. The doubly illuminated dibit and hence the

contradiction would be removed.

Resolution of the type described using Figs. 2 and 3 can be done in paral-

lel. A bit vector representing a clause can be resolved with several clauses in

parallel by use of the technique illustrated in Fig. 4. All of the optical com-

ponents are not shown. The light patterns representing a series of clauses,



introduced temporally. are spread1 to ov erlap thle pat tern% of sveral cliues at

once. Each column in the result matrix is a %eparatte resolvent. A spam ial light

modulator. such as the liquid crysta;l array, can then remove .1ll cont radict ion%

n parallel. An altcvrn ate approach t hat allow% se~ eral ci au,,"s to be reorl ved

%IthI re'pect to several omthers is show n li F:ig. 5. In t his case, the Ijhicral- are

not Introdluced Ii paraillel. as Is thle case Ii Fig. -1, hut ain arra) of ourcv4 are

modlulated1 to introduce them ,eriatllv i timne. Thie first literals Ii all the

e lau~es shown ho iowtal lv are r-esolved wit hi respect to all of t he- fi rst lit erals of

the clauses shoi~n vertically. The next clock cycle, all of tle secondl lii rak, are

presented. etc.

Pepresent at ion in tlie qjuanti fied propositional calc ul us is considerably

more complicated. Here, eachi clause is composed of literals, each of which is a"n

ordered list rontaininlg 3 Predicate namne followed by arguments. Thle argu-

inents mnay he either constants or variables. The representation must allow thle

optical substitultion of any const ant for a variable, or one variable for anot her

in any of the argument positions. and It must lbe possible to make thle same

subst it ution in all literals wit hin the clause. The represent at ion mtist allow for

ain indefinite nu111ber of literals in each clause because, in the uiatldied propo-

sit ionaml calculu,, a predlicate may appear more than once in a clause, each time

with dt(ifferent arguments. A feasible represent ation here is to encode eachi

literal as a rect angular hit array, with one dimension representinig thle sequence

of names in the ordered list, an(1 the other dlimension used for an encoding of

lie act ual predicate or argument name. Figure 63 Is an example of a literal

represented in this way. Each row in this not at ion Npecifieg an eleme(nt of the

ordleredI lit of namies which represents a literal. Pow I encodes thle predicate

- -. -.. ,. * -- * . - .. .. .. - - - - .
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name itself, and whether the predicate is asserted or negated. This row could

use the same (libit notations used in the propositional calculus. Row 2

repreents the first argument. Each column in Rows 2 - n represents a particu-

lar con,tant or variable name. Thus in each row, exactly one column will be

eliminited to indicate the name of the corresponding argument of the predi-

cate. Pow k is used to encode the name of the k-I th argument. Substitution

of a constant for a variable or a variable for a variable can easily be performed

by deflecting tile column associated with the variable to be eliminated into the

column of the constant or variable to be substituted for it. This is not as easy

with more densely encoded representations.

A clause is represented by adjoining a set of literals in either space or

time. The spatial representation has the problem of encountering implementa-

tion bounds if the number of literais in a clause gets large, but one can argue

that it is unlikely that clauses with a large number of literals will participate in

the successful solution of a problem in which the objective is to reduce the

number of literals to zero! A time serial representation makes it easier to han-

(ie large numbers of literals, but also makes the performance of parallel opera-

tions more difficult.

In view of the complexity introduced by moving from the propositional

calculus to the quantified propositional calculus, it is not surprising that mov-

ing to the first order predicate calculus introduces another quantum leap in

complexity. By allowing the arguments of predicates to be functions, which

themselves have arguments (which may also be functions), the matrix notation

proposed above is completely confounded. Conventional expert systems use a

graph-structured notation for such complex clauses, and there is no obvious

NEW%-.M
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way to translate this notation into a parallel form which can be optically mani-

pulated. This problem must be left until the state of the art in integrated

optics and optical control has taken another giant step.

OPERATIONS

The process of resolution can be regarded as a set of nested loops, in the

computer science sense. The outermost loop is the process of producing succes-

sive generations of resolvents using whatever resolution strategy is selected.

The next innermost loop is the process of producing the resolvents themselves

through the interaction of earlier resolvents. This process may be serial or

parallel, or both, depending on how the implementation represents resolvents,

and whether growth in the data set is handled in time or in space. In the

quantified propositional calculus, there is an additional innermost loop running

through the possible combinations of literals within two clauses which might be

capable of unification with proper substitutions. Within these loops are con-

tained the actual operations of resolvent formation, substitution and union of

clauses. We indicate below how these operations may be performed optically.

At the present state of technology, some or all of the interactive control

required for a complete system would have to be supplied with electro-optic

interfaces, but the operations themselves are amenable to optical implementa-

tion.

The fundamental operation in the propositional calculus is resolvent for-

mation. Using the dibit representation introduced earlier, a trial resolvent of

two clauses can be formed merely by optical superposition, as shown in Figure

3. A matrix of trial resolvents can be formed 1:y spreading a clause in one

- .. IS * ~ '..% % %.S., .5. %
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dimension with a cylindrical lens and superposing it upon a matrix of clauses.

Each row in the result matrix is a potential resolvent. The validity of a partic-

ular trial resolvent can be ascertained by counting the number of dibits having

a value of 11 in the result. These dibits correspond to a literal which was

asserted in one clause and negated in the other. The fundamental role of resol-

vent formation states that a valid resolvent exists if and only if precisely one of

these occurs in a trial resolvent.

It is not necessary to actually count the number of contradictions in a trial

resolvent. We may introduce a pair of boolean control variables C and X, such

that C is true if at least one contradiction has been detected in a set of literals,

and X is true if more than one contradiction has been detected. These vari-

ables can be determined in log 2(k) logic levels for k possible literals using the

algebraic formulation of Eqs. (1) through (4). In this formulation, j is the logic

level, and the outcome for a valid resolvent is C[final,O] = 1 and

X[fitza!, 0] = 0.

C[1, i] = {1 if dibit = 11 else 0} (1)

X[1, i] = 0 (2)

C[j, i] C[n- 1, 2i] or C[n- 1, 2i + 11 (3)

X[j, i] = (C[n- 1, 2i] and C[n- 1, 2i+ 1])

or X[n- 1, 2i] or X[n- 1, 2i+ I]

Optically, this can be implemented with logic operating in one dimension

upon adjacent elements representing a trial resolvent. To manage the data set

effectively, the outcome should be used to drive an optical compaction system,

perhaps using light values and acousto optic deflectors or a holographic array,

to 'squeeze out' invalid resolvents and maintain the physical adjacency of valid
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resolvents. This can be accomplished using log,(n) levels of deflectors, where n

is the number of trial resolvents generated in parallel. This is shown in Fig. 7.

In this example, the resolvents in positions 1, 4, and 6 are invalid. The

system of deflection removes these and presents resolvents 2, 3, 5, 7, and 8 in a

physically adjacent pattern at the output.

Once we move to the quantified propositional calculus, the operations

become much more difficult. To resolve two clauses, not only the original

clauses must be examined, but the permissible unifying substitutions must also

be performed. These substitutions can be considered by the following imple-

mentation.

For two clauses, each containing N literals (predicate functions), there are

N' possible ways to resolve them, each using a different pair of literals. This

suggests that each clause be replicated along a row or column, and that, each of

the elements in the matrix produced by superimposing these rows and columns

is a potential literal to be eliminated by resolution. This replication and super-

position or clauses could be done with a holographic array simulating lenses

and prisms. The internal structure of each element is as shown in Fig. 6, while

the overall matrix of elements is arranged as shown in Fig. 8. Each element in

Fig. 8 represents a comparison of a literal in one clause and a literal ii another.

For example, the upper left hand element of Fig. 8 represents the unifier of

P(z, A) and Q(:,B) . Obviously this unification fails. However, the center

element, representing the unification of P'(x, y) and P(z, z), succeeds with the

substitution of y for - (or : for y). The comparison is alid if the predicate

name is the same for both literals, but asserted in one and negated in the other,

and the arguments are compatible. Arguments are compatible if they are
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either the same, or can be made the same be substituting constants for vari-

ables or variables for variables. At each matrix element in Fig. 8, different sub-

stitutions might be required to resolve the two clauses, but if each literal is a

predicate of K arguments, at most K substitutions need be made. This can be

implemented by passing the elements, in parallel, through K optical substitu-

tion planes, each of which considers a different argument to the predicate func-

tion. The following operations must be performed in each plane, at each ece-

men t:

If both arguments are constants, propagate the union of their values. (5)
o.5

Propagate the constant for all occurences of the variable

if one argument is a variable. (6)

If both arguments are variables, propagate one of them. (7)

The optical output from each plane is the input to the next plane. In the

final output, a successful resolution will be indicated by an element with vari-

able arguments (outputs in the variables portion of the pattern of Fig. 6) or a

single non-conflicting constant in each argument position, and identical but

complementary predicate names, similar to the situation in the propositional r

calculus.

The algorithm described above detects the possibility of valid resolvents,

but does not actually generate them. To produce the actual resolvents. the

resulting matrix must be scanned for valid elements, and for each one found,

the corresponding resolvent generated. If we optically shift the clauses as the

result matrix is scanned, we can generate shifted versions of the clauses such

that the literal to be resolved out is the first literal in one clause and the last

literal in the other clause. This is shown in Fig. 9. The valid resolvent can

%
k'- -'-:'--'. ". - ,:'-" - " ""'. '." +'-"" "-: -"- ,." :'."-'• "' "--'-+'-"-,'- '-, . "" "" ".-'.-" . -. '-'> - . -,- ,' - ''." .. ' -', '.' .'-2.' .'.
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then be formed by juxtaposing the two clauses after performing the same sub-

stitutions on the entire clause pair that were performed on the literals using

operations 5 through 7 above. Thus, the clauses shown in Fig. 9(b) were gen-

erated by circularly right shifting the original clauses of Fig. 9(a) one position

right. The clauses in Fig. 9(c) were formed from the clauses in Fig. 9(b) by uni-

formly substituting A for x and w for y. The resulting clauses are then resolved

by eliminating the complementary literals to form the resolvent of Fig. 9(d).

Since several elements of Fig. 8 may allow resolution, this process may have to

be performed several times to generate all the valid resolvents of two clauses in

the quantified propositional calculus.

The shifting is easily implemented using fixed optical elements. Once the

literals to be removed in the removal of contradictions have been shifted to one

end, an imaging system can combine the two clauses. Appropriately placed

stops will remove the contradictions.

As in the propositional calculus, resolution in the quantified propositional

calculus requires the consideration of all possibilities allowed by the resolution

strategy selected. In the quantified propositional calculus, the consideration of

a single possibility is complex enough that the outer loops of the process will

probably be implemented electronically. Furthermore, the nature of the

processes is such that some inputs to the system change much more rapidly

than others. This suggests the possibility of using Fredkin gates 18, 91 for much

of the optical logic, because one of their characteristics is an asymmetry in time

response between inputs. By using the slow input for less frequently modified

data, the performance of the system could be preserved while taking advantage

of the simplicity of the technology.
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SUMMARY

Ve have described the process of mathematical resolution for the proposi-

tional calculus, quantified propositional calculus, and first order predicate cal-

culus. For the first two of these, optical data representations have been pro-

posed. A feasible optical implementation of resolution has been presented for

the propositional calculus, and its extension into the quantified propositional

calculus has been discussed. The implementation in the quantified proposi-

tional calculus is sufficiently complex that significant electronic and electro-

optical assistance will be required. Nonetheless, the implementation is

significantly more parallel than present methods of performing resolution, and

offers promise for higher performance in expert systems.
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FIGURE CAPTIONS

Figure 1. Sample clauses in the propositional calculus. The possible literals

are A, B, C, D.

Figure 2. Dibit representation and resolution of two clauses. (a) dibit

representation, (b) the two clauses A + B' and B + C, (c) trial

resolvent, (d) completed resolution.

Figure 3. An optical method for resolution using dibits.

Figure 4. Spatially parallel resolution of one clause and a set of clauses.

Figure 5. Time serial resolution of literals associated with two sets of clauses.

Figure 6. Structure of the literal P'(A, y, C) in the quantified propositional

calculus.

Figure 7. Resolvent compaction illustrated.

Figure 8. Replication of clauses.

Figure 9. Sequence of operations in clause unification. (a) original claules,

(b) clauses after shifting, (c) clauses after substitution, (d) unified

and resolved clauses.
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MATRIX-VECTOR MULTIPLICATION

USING POLARIZATION ROTATORS
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Center for Optoelectronic Computing Systems
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Abstract

A new approach to optical matrix-vector multiplication is described which matches sig-
nal processing algorithms and architectures to optical primitives which directly perform rota-
tion operations.
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MATRIX-VECTOR MULTIPLICATION

USING POLARIZATION ROTATORS

L. Scharf, NV. T. Cathey, K. M. Johnson

Center for Optoelectronic Computing Systems
Electrical and Computer Engineering Department

University of Colorado, Boulder
Boulder, CO 80309-0425

Introduction

The potential application of optical systems to perform high speed, low cost signal pro-
cessing with large parallelism has attracted the attention of researchers for many years. Gen-
eral optical processors have been developed that compute matrix-vector multiplications and
other linear algebraic operations using incoherent light. One example is the Optical Matrix-
Vector Multiplier (OMVM), which calculates the discrete operation of a matrix-vector pro-
duct, rather than the continuous correlation and convolution more commonly associated with
optical processing [1]. The OMVM can be used to compute discrete Fourier transforms
(DFT's), and for performing linear algebraic operations, including matrix-matrix multiplica-
tions. It has been suggested as a method for implementing associative memory [3-5] and opti-
cal crossbars [4]. The first OMVM had several disadvantages, including low accuracy, low
speed, and a nonprogrammable matrix mask. Recent implementations use real-time spatial
light modulators (SLM) [5-7] and acousto-optic cells [8]. The two-dimensional spatial light
modulators used in many of these optical processors operate at millisecond speeds, are expen-
sive and have low resolution [5, 71. One-dimensional modulators such as acousto-optic cells
are faster, but the major drawback of computing matrix-matrix operating using one-
dimensional devices is that to calculate two-dimensional matrix-matrix operations, data from
the rows and columns of matrices must be loaded serially. The cycle time through the proces-
sors increases with the order of the matrix, and the natural parallelism of optics is lost.

Objective

The goal of our research is to achieve 100 x 100 matrix-matrix multiplications in a
microsecond, with 10 bit or greater accuracy. To achieve this goal, a new approach is needed.
We describe a two-dimensional optical systolic processor with new algorithms, architectures,
and devices which we believe will result in the evolution of an optical processor capable of
meeting this goal. In this paper we outline our design principles for high-speed, high precision
optical implementations of linear algebraic computations.

One can view the matrix-matrix multiplications problem with the frame work of an I/O
problem and a realization problem.

(i) I/O problem : multiply matrices A and B.

For this 1/0 problem there are an infinite number of realizations
or algorithms that one can use to perform the multiplications.

..................................................



We can use this freedom to optimize criteria associated with the
computation. For example, in some digital processing problems we
choose an algorithm to minimize the number of computations. In this
particular application we wish to design algorithms which use low
accuracy primitives to obtain a high accuracy result. We also wish to
pipeline computations, develop highly regular and locally connected
geometrices, and to use simple optical primitives as the basis of the
algorithms.

(ii) Realization problem.

The realization problem consists of finding architectures that consist
of simple optical primitives, connected in modular veometries, to
produce high-accuracy results by pipelining the computations through low
accuracy cells. This goal involves:

(a) low accuracy primitives for high accuracy results
(b) modular geometrices
(c) pipeline computations
(d) simple, optical primitives

Algorithms and Architectures

The algorithms being used for this processor break-up matrices into repetitive operations
on a smaller set of orthogonal rotation matrices. The algorithms are low loss and the archi-
tectures used to implement the algorithms are cellular, as shown in Fig. 1, and based on opti-
cal operations 191. ya n

Pyn
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Figure 1. Cellular Implementation of a Vector Pipelined Projection Operator.
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We can use this freedom to optimize criteria associated with the
computation. For example, in some digital processing problems we
choose an algorithm to minimize the number of computations. In this
particular application we wish to design algorithms which use low
accuracy primitives to obtain a high accuracy result. We also wish to
pipeline computations, develop highly regular and locally connected
geometrices, and to use simple optical primitives as the basis of the
algorithms.

(ii) Realization problem.

The realization problem consists of finding architectures that consist
of simple optical primitives, connected in modular 'eometries, to
produce high-accuracy results by pipelining the computations through low
accuracy cells. This goal involves:

(a) low accuracy primitives for high accuracy results
(b) modular geometrices
(c) pipeline computations
(d) simple, optical primitives

Algorithms and Architectures

The algorithms being used for this processor break-up matrices into repetitive operations
on a smaller set of orthogonal rotation matrices. The algorithms are low loss and the archi-
tectures used to implement the algorithms are cellular, as shown in Fig. 1, and based on opti-
cal operations [0]. Yn
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Optical Implementations

Fiure 2 illustrates the rotation operation on inconiu signals as a (2 x 2) matrix map.
This same operation can be implemented optically using device that rotate the polarization
or the input vector. One optical implement ation of the rot at or-com bi uier is shown in Fig. 3,
%%here the first element is a polarizing beinisptitter %hich separates (he x und v conponent
The second polarizing beanisplitter acts as a combiner of the appropriate components, and a

polarization rotator then imparts the desired rotation onto the resulting vector. For hard-
wired applications. quartz. which gives a rotation fo 21.7 /rmn. could he used. The thickness
can be controlled to .ield the desired rotation. Ehvctrically controlled rotators would give
prograinmmability and an array of liquid crystals could provide discrete rotations.

U.

VI COS 0 SIN 0 U

U.
V2 1 ccS SI ,

V.

Figure 2. Signal Rotation Operation.

Figure 4 shows that, with the development of a rotator-combiner cell, the general rob-
lern of implementing matrix-vector and matrix-matrix multipliers in numerically stable
machines can be implemented in a regular cellular array of such rotator-combiner cells.

Y R R

Cell Cell

V C I C R 17 A .F

V C R H __ . It R

'5> '

1 2 Y5 Y4

Figure 3. Cellular Architecture for Implementing a Sequence of Put ationS.

We will discuss implementing the rotator-combiner cell using polarizing beamsplitters,
and ferroclectric liquid crystal (FlIC's) which can switch the polariz at ion of incident light in
less than a microsecond [10, 11]. These crystals, developed at the V'niversitv of Colorado,
Boulder, in the Physics Department have already been fabricated successfully in 32 x 32

p7,- _AL.LJ. 1-P ~ %~J A ~ -



matrix arravs [12]. B~y making 256 x 2513 matrix arrays, a trade-off between arrayv size and
accuracy can be achieved. In addition, since these [Pt 's are capable of %tubiiro~econd
switching speeds, a tracde-oll between speed and accuracy cau now be inade for the 17-,t tie

PBS PBS H

Figure 1. Integrated Rot ator-('orbiner I sing Polar, ring firanilplittIer'.
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POLAR IZATIO N-BASED OPTICAL PARALLEL LOGIC GATES USING
FERROELECTRIC LIQUID CRYSTAL SPATIAL LIGHT MODULATORS
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('enter for Opt oclec trozic (Com1put inrg Sys~t ems
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Introduction

Optical CompUting sv~tem, offer an increa'le(Iinformatlonl processing rate by facilit ating

paraillel computing architlectures. i1 rcviOkl% V~periviire %Ith electronic com~puiters inldicates

tIv hit(leired atccuracy can he achle~e(I only. wit 1 digitl1 collilitatloll Since Ille 'lliplest dipi-
tal irithnrictic I-, hilarv, miost r'cenlt work 0o 0optical (011 iplitifng is focuised off (lhe coustructmou

or Iiary opt1ical logic gaites- \1;snY practical llllpltllleit i lo (f 'sulch logic gates hia%e been
lg~ertt'(I. a recent re~ jew 1, given b). Sawehiuck mid 'trild II %lo'.t pl'c'~ioi's st-hleni

operate on light Intensity, Iiiuch In) thle Way. tha1t cetciroric ' 'stelil' ojler.itv oil %oltaigr or
ciirrent . Aniot her liattoral optical '(ciile represents ille I W I iIrv' 'sIimt' A ithi (%o' onhogoiial
Jpoh~rlzimloti, of ighit. 'ihie oplticali eliiieiit titcessr). to 1111 jlenilltllhis Nc litIIi as (-A .i
%%,,it I two t ites, onie of %iilihli~Is li !Iit Of a cio'en pohiiritloll iincliarigtu ll tiht- othr

oif Ah hih con'vnrt light of (the cilo-en poliri itiloln to It's (IrthiouuAl C(Illliitit lI'%ctko% I(t
ail. jIl lia'.e (le'crhehl ;% prirticil imlnitltit :t loll (of t ils logic t141r14 tlii' llol% collillionl t W 'tcd
fietwlilc ('I'N) liquid rrv~tal dlevice, 1%%iicii 11iit o o()'.1(11 O't'' ledI(I ofi Ot~ Jl'(f v lloch rot .ttes

till- Jpolr:liatiort (hlrctil(l of apJproJpriitcl'. orietitc hnIIem''r'.N po(l.rilr light 1iI (i)' awil thet

ret .indlat on effecti suchi as tile l'ockel's uffcct ),,, 'stiltt ofr lit' AI" (mit (Iit ('(l0tl to li~i.t

zero re-ttrda'tion, anid the other to atlil-i:'. ret arditioti ItII til oll to vit her jI.t's ii

11t1clarigel or iImpartin~g 90* rotation to lle.&rl ' v pohnlietd fight, Ihi-4 'schem til.1111k afko %ork
bN e ct her pa's'slnig uinchanged or revecrinlg tilt- ontli' of circilitrli ipul.ruied light .\ll1

oi v li ler lc 111 e( 00 ou ti.t by .1111 i's 11 1: :tl)t ri Ilh pi' lo it i Ih lo i ~rit i fo o rii (it if- '.tr'loi c
liflto (,lo;I c ba r n I t ISt -IItfo l it1 o tIl I# o l- 0 s if t'1 lol ,. r Ij~ r~o

IlIntw1 V-a~ed logics, it 1, dilffcuilt to in'. rt aill ;ilreAtrk dairk miit. iir liht a I, to hr
r c r'aed; 1) o Ia r1r?:It Io n -bas ( I elnle it t , a ,d es c r 11) c d i ho' te. c iLl I I icr t t l Ii lgh tI I r'e it I

lng cither logical state to tile other, ti:iking ea't' . thef( r(,il i It (Jn r ally (le'irl Iloohlill fuotc -

We dlescribec below a third Im plelnftt loll, It, %.hitli tho optical t'eluelit Ist a ft'rro('lectric
liquid cryst al dcv icc that fu nction, .11 a half- wave pla;te hjo'se aLI- i can he el(ct ncjI aN t oggled
between two orientations that make a *I5* angle' to each other. Thlese cetrclt't ha'.
ext remely useful operating chlaracteristic, for opticail iiar;lltl procr4ti4, 11.Includi ng f.1-t
re~ponse time (,iubncro~econd), low-power, low-voltage switchiing ltts oif \ oh.,)a. h'sa
billty 111. FIX' element., have already been iiqed fin an illtIi'iNOY- ha'sed hir '-4hierne %here
thecir high contra'tt (upl to 15)00) ha-i be'tn e',1 tloited to) Ldb lIlItige 11W 'lit oliit ionll-tse
gate can perform all 10 [3oolean logic functionst pi's'lt with1 two hinair) ill jot's. %it hokt till'
n eed to manually remove or change any, of thle opt ical ceriewls' InI part mc il tr. %e shoA re'st

clally simple implernentation~ of tile X0( lawl XN( )l logical opcr~itions'
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FLC Electrooptics

Ferroelectric liquild crystals posstess properties especiallv attractive for optical logc
applicationis when ise in thle sAo-called surface-'taijilzed g'oflietrv, whichi has been describeJ
rxtensi~e cl lsw here [6 7, S1. PIreOl,. thle IX 1-s disposed between two closelyN spacedl glas
plates. coatedi on their Inner surfaces with a transparent electrical conductor. The Vl.i
iniat rial itself 19 opticall- uiniaxial (we ignore a weak hiaxialit','', with (tie unliaxis coupledi to
lit, ffer rcct c polairi7.at ion P so that %~hen P is pe rpendicular to tOe glass plate, tIIc
iima\i i4 parallel to themn. T1wo such orientations of I~ are easily selectedl bY volt agt-s applied

a ross thle t rauiparent elect rodes; P prefers to be piarallel to the resultinrg electric firldl1
ITie opt ic ax is !kt at es selec ted li *v applijed volt ages of opposite signi while hothI parallIel to thle
jl:tes, dliffer lin orient at ion by -an angle 2tjs, where thle "tilt angle . 0 is a niaterial propcri)
dtetermninedl by the t he rmon ol iamic c harac terist ics of the F M .1any F l(C inate ri ats Ii e',
close to 22* over large ternperatunre ranges, allowing the optic axis to he elect rically- rot atel
hrot irh approximinately [O*. if tlie thlicknress d of (lie FIX' laver Is chosen so t hat An = X2

w here Art Is ( lie F l.( 's hirefri ngence and X is4 the vac uum inWavelength of tilie Incident lighi, the
1l b,'1ecomes a lialf-way' -+tte. If the polarization of nor171all1Y inlcident1 light is clio~rii cihor
parallrl or prpendicuilar to one of the volt age-9elected optic axis states, It will be trari'rrit Iel

bhrorigh tie FIX unaffected. The optic axis state Selected by thle opp~osite appliied volt:1age is
lien 17) to cit her Incident polarization, so that both tilie ordinary and extraordinatr y moii(-
%Ill tbe exci ted. For correct FIX celetnent 5 thick ness d at total phase shift of iT will arCC'Ioii 1-

late bttween these two modleg, andl the incident lightsi polarization will be rot ated liv (do0

Bteside tire previously meritioned switching speed, thle surface-stabilized FIA' gcortetr rN
lffers a nothter featuiire useful in optic at logic !gyst ers: bist ability. After cithter ap plied volt;age

biri ngs tilie optic axis to one of its preferred orient at ions, t hat voltage may lie remuoved witbot
fie optic axi4 retkurTnin to Its lire vlis st at, e. This allows. a two-tilmenslinal arra) of Ov . d-
iviit to he mat rix addressed. For Instance, if tile conductori are divideid on one( plAte Into
roiinin elect rores and on thle other plate int o row elect rodes, appiropiriate w avefor irs applied
to thle roNws andl colmnis would allow a selected element, w here a given pair of row anid co iini
elect codes overlap to be changed withtout dist urinrg mry of tilie othter element s li tilie arr.iv-
practical scheine for accomlpliShing thIis has been denmonstratedl by W\ahl et al. ji), 'A it(
a-chieved 1000:1 miltiiplexing. Thus, a large tnumber of c-± lements (1000 x 1000 = 10") ran
te lutild~i fabricated on a single substrate, andl driven with an economical rilirilier of electrical
rnt ine c t i0n .

Ferroelectric Liquid Crystal Logic Gate
Trhe Xoit (Ami, + Al11) aind XNOIZ (.\lt + AT\'I) Iloolean functions are fte rro-t (tifIciit

to Implement optically ur-ing b~rligt and (lark logic. Ttiis is bcause tight is irretrier :rll lo't
whlen creating riot A (A\') arid riot It (It'). L~ogic gates using bright anil true logic, thtert-fire.
reqri ire four separate inputs; A, 11, A', arnd It'.

WVit h polarization logic, these fiunctions are eagily, Implemnented usinrg two F l.( arra 'N anl
optical controller, and an analyzer a, shown in Fig. 1. In this gate light Is not ahisorheil. irid
(toes not reqtuire regeneration.

F-or the \0OR operation, tire cont roller is in a non-qwItclie(l state, and vertical light
Illuiinat es FCarray A. This array is a prograrriniable miatrcix nit:%(dc ipl onl transpackerit pi\Cl
elemnents which either rotate or do riot rotate Incident ligl.t (switched or riot switched o l'
Whlen verticalli- polarized laser light illuiminates the switched pixels, thle hliht irotitel tio

the horliontal polairize state. Wheni the Inident laser light illiin ries iotiis% itctied pixels.
no rotation occurs anil vertical light is trariniitd. A\ pattern made upl of hiori'imir d * nl
vrtical polarized light Illuminates F',- array It. If eithter vertical or hocizirital light
illimlinates a switched pixel li FI,( It, tire liolril:atiln i4 rot atedI by 90*, %ecticat co)t ,itr% to
horizontal arid horiontal rotates to vertical. If light is itmiceit on a noi-switchel pixel, tlii-
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tran~mitted light retains its polarization. The truth table in Fig. 2 sumumarizes the logicAl
function. An analyzer at the output provides visual Inspection of the XO1U function.

To realize the XNOR, the FIX optical controller is switched1 which rotate-. tbe Incident
vertical laser light to horizontal light. The truth table for the x.Noi? function, is alsio -sboA-r
in Fig. 2.

Con clusaio ns

WVe describe a, Dew optical parallel logic gate Implemented Nvitli spatial light modulators
muade of arrays of ferroelectric liquid crystals ( FLC) elect rooptic elements. The unique optical
properties, of the FI.C elements make particularly sim ple a logic w Lere two ort hogonal polari-
Zat ions' or t ransimit ted light represent the two binary. states. A feat ure of this logic i that
light need nev',r be absorbed, allowing all 16 Boolean functions of two binatry inputs to he
Implemented In a single gate; additionally, cascaded gates are equally feasible. VIJ-5' also
confer the advantages of submicrosecond switc hing speed and intrinsic two-st ate memory.

WVe will also discuss progress in synthesizing new H.C' materials with faster s~ itching
speedl. Improved contrast ratio and temperature stability. Scattering and insertion losses, and

sitch*Ing energy measurements will he presented. A comparison of the VI.C spatial light
mod ulator with the cleformable mirror device, the silicon PUJ T, and the maglieto-opt ic spa-

ida light modulators will he muade.

FLC Matr-ix Arrays
HeNe Loser

10 mWLI

Output

A B3 Optical
Controller

Figure 1. FLC XO[Z and XNORZ Optical Logic Gate.
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A B Controller
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FLC A FLC B output output

,', __> 9 /v

/\ /j\

Figure 2 XOR and XNOR Polarization Truth Table
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Abstract
Switching speeds of photoaddressed liquid crystal spatial light modulators are rurr,-nt lv Iimied to

several milliseconds. This is due in part to the choice of liquid crystal inermativ) and in part to the cholce
of photoaddressing schemes. In this paper we describe two methods for naking plhoaddrsed liquid cry-
stal spatial light modulators with microsecond response times.

Introduction
Optical computing systeis offer increased Iinfornation processing lhrouihput rates hv taking advari-

tage of parallel optical architectures. The fundamental component in the-e arc hit ertires is a devine whNi
can modulate two-dimensional optical data. These devices are known as spati:il lcigt iiodulators and ha ,e
many applications including input/output di-splays, spatial and matched filtering. Incoherent - coherent
light converters, optical crossbars, and optical associative inenories.

Spatial light modulators (SI.ls) are programmed using either electronic or optical aidre.ssi ng sche, res
Optical addressing of spatial light rt odulators is advantageous because it is a direct addressing technique -
a camera, frame grabber, and cum ,uter are not required to write a data pattern onto the SL1. Existing
photoaddressed liquid crystal SL.Ms are limited to millisecond response tines [1-51. In this paper we
present two methods for fabricating.SLNs with microsecond respoisc times by plot oaddre -,i rig ferroelec-
tric liquid crystals with hydrogenated amorphous silicon.

Description of the FLC Spatial Light Modulator
Ferroelectri- liquid crystals possess properties etpecially attractive for optical processing applications

when used in the so-called surface stabilized geometry [6-9 1. As shown ii Figure 1, a slab of
essentially optically uniaxial FLC is disposed between two closely spaced glass plates, coated on their
inner surfaces with a transparent electrical conductor. Voltages of oppo.site signal applied to the plates
select between two optic axis orientations, both parallel to the plates, but differing in direction by an angile
20. The " tilt angle" 0, a materials property of the FL, is close to 22.5 over large temperature ranges,
allowing the optic axis to be electrically rotated through approxiniately .15. If the thickness d of the IL(

layer is chosen so that And - A-, where An is the FIU's birefringence (typically 0 1 - 0 2) and X is the
2'

vacuum wavelength of the incident light, the FLC becomes a half-wave plate.

If the polarization of normally incident light is chosen either parallel or perpendicular to one of the
voltage-selected optic axis states, it will be transimnitted through the FI.C unaffected The optic axis state
selected by the opposite applied voltage is then .15° to the incident polarization, so that both the ordinary
and extraordinary modes will be excited. For correct FI.C element thockne,s d, a total phase shift of ir %llI
accumulate between these two modes, and the Incident light's polarization w ill be rotated by 90° I'igurc 2
schematically illustrates this action of the FLX electro-optic element

The switching speed of the FLC element for a given applied electric" field strength E, is largelN det,,r-
mined by the FLC material's ferroelectric polarization I', and vislo-ty n, through the relation

....._r
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Optical 10 - 9WY times are uisually about I.S T '10o> The ofc5iV( t rw-efl9'te ri d c'in be ljetermineC
from the above relation when P is known. F~or the hrih I (titiraltire nimcriai llIlI.\( l'(* this reLitioii
gives -1 . cP at the lowest temp~erature in its sict!ic C( phas Jil Vr a typical roomn tinirrirfe
iiiaerial. ('S-101 . one can Infer T1 :A) 50P from ti [Iruatrr L Iult im pr',veiiiirits over

thanby he withing tme o It; H niternf.SItvhiig a uni1t area of bv reesyga
alJi. otgeV* sptsanee-y- V .iot1 h ree fr the polari7:ition If this; reversal 4
rcipcateii as frequently as i ossible (i.e. once every I.T) thle pow)er ispae is 2 PV/(l I~ ::= Tp/T_. where

J ,the FIX' thicknvess (F V/dI). Trhus, for a given in:ixiniti urA:lowable powker li-ii:ttion WY the tshortest

SMETI

LAER

Figure 1. Ferroelectric liquid crystal structure.
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achievable characteristic time is given by T 1 [91lfVP . F or operation :1t roomn teiperattire iof anf I- 1
device of (Id I Ln with a iss ipation of'XV lot) in\ WA-rn2, this relation gives a iniinu I wtchinlg timle
of 1 3j s; at an elevatedi t elip rait ure with WiX X/~ tilie U111t iii ii ii %inwitch~l iiigttile 1 redjucetj to 5W) J!

Because the previously in en tion ed ,w itchIi iig ee the -irf:ace--t akhzlIHJg FLU i pint rv offe r'; :ni ii

feature Useful in optical logic systems : bistability After either al)L'Iid '.olt:ige l'ririg-, thle optic 3i\0 to onle

of its preferred oritations, that voltage inay be rtiiiovel wiltit thle optic* axl- rettunn to its previotu
state. Arniltage et al. have diemonstratedl optical add r~siiig III FIAW 13 ll is-taily niit akes thi.s addrv !-
ingq -1hee attractive s ince the write lighlt riev- only be :apphed wi)g et iiih Ii) t''itlhe IAli aftrr thiat
the '.%ritten iinia-e can be rotaii:eui by tile -urface-stabilize(I I L(-' iintriii-ir iiie1inir

Photoaddressing spatial light modulators
Phot ose nsors for SLNIs have been fabricatedi front v arious in ate ri als. a- utniiinarizedI in Tale 1. Sine

the s'.%itchingl speedis of mos;t of thee devIces Is, liniited li b(lie mnolulitor to inooier:ite, valti- iiilis~-conii-i,
the re-potvse-tirne demnandls placedi upon thle p iotoseiiors have bve n oliet 'fhie hug-sliuid cry-tal
light valve, for example, uses a C,15 photosens.or 1L '21. In this he.iea neniatic lijuil cry-tal is s\%i.tct~cl
with a 30 Imsec cycle timie. Other successful photoadd~re~-sedi SIMs use crvstallimie s-ihon to sw itch nieniatic
liijov]i crystals [3 andJ electro-oplic cr\ystals [3,. Thle respon-e ttie- are al-)o in the ordier ,f iilflisevoiois.
althioigth in the elect ro-optic crvstal a cvcle tullie of tt 5 iiiilli--'cornhs I, [re(ictel A-hhvII aol IDavis hav1e
fabricatedi liquidl crys tal SLA~s in wkhich the plioto-ens-or i-s livrogeonatedl ami~rphowui si4coi Vlder
low-1oitensity 1i11111itfat ion. these devvices exiiii a cv\dc timie of 1100 ni-er WVit tile idlvent of thle FL(' it
becoittes pwoNile to fabricnite S I.Ns \.hiih v\Iiiibit cl- tutu1", 111 thle liron ('11i1 ri-goute Tlis places iii'-

s-taiitiAilv inore severe ileniardIs Upon thle pilotosetor.

Table I
Comparison of Photosensors for

Spatial Light Modulators (SL~ls) _____ ______

SIA1 Phit-en-or C. )ttr it ti I Xli V I 1-e P, i P I? U l toIi

Filin Agl~r ]f)Vt). D> I OO Ip/ M I

llUZIs' 30S v)15,ot - T oec 30 Ip/niti

11lit!hes'l Si 100 V, volts 17 l105cc 15-lo Ip/rn I
L( L. V Optical [00c rr

Nerniatucq 3,Sill1 100) 1,2'%. it- 70) ii-(c > 3 5 1p/m

Fletro- optics Si 50', MITV t10' \olts 15J,-2 in1-cec 10 lp/lm
Cr -takI

F~T1, CA( 51tvolts 50 tosc 3 I p/ninm

SII) ~ C\/2 1r) '.olt 10 i.-cc 100 11)/ton1i
(6 x 6 Arriy-) (.iAI.\S optic1 Il'k aild

t FL a-il It00 10 15 v1t I U kc 100 Ip/itimI

______________ x________ I2 ___________ ____________ __________________

t r~or
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H ydroge nated amorphous silicon (a-SillI) inav h ave thle p denV~t al1 to filfill h Ie deinanld iig requirements

of FLC-based SL~ls. Several aspects of a-SI:ll make it pauicularlv comapat il \ it h high performnance
SLNMs.

(I) i gh photo-odark con duc tivityv ratio. Under Ill umiiin ation of I n\%*( ii this ratio is tyvpic ally over
three orders of mnagn itude [141. The dlark resist ance at ross a film ich i Iiz is sveral in itrons thictk is over

(2) Large area. coverage. As the material has been developed for use III tHat panel solar cells, uniform layers
of a sq. ft. may be deposited.

(3) Excellent spatial resolution. The diffusi4on lengcth of holes Is below 1 micron [15[j. The requirement of
space charge neutrality prohibits the pliotogenerated electron from migrating far from the photogen-
erated holes which, in turn, remainr within I micron of the point of illumination because of their poor
diffusion length. This localization of carriers correspondhs to a spatial resolution of better than 100
I p / im.

(4) Appropriate wavelength response. The optical absorption in a-Si:Ii rises sharply for wavelengths
shorter than 700) urn, roughly corresponding to its band] gap.

(5) Thin film. Because it is deposited as a thin film, transmnission- inode as wvell as reilection-mode SLMs
may be developed [161.

(63) L.ow ternperatunre deposition. The deposition tcrnperature is typicallyN 25T0 (C. Therefore low cost, temn-
perature sensitive substrates, such as Sno, coated glas. niay be utilized.

Con figurations
Two basic circuit configurations for the photoaddressed S.LM are shown in Figure 3a and 3b. In Figure

3a, the FLC is de picted as a capacitor in parallel with a. resistor, aiid the p hot ose nsor as a p hotod ode. InI
this conftigu rat ion volt age is norm ally applied to reverse bras thle phiotod io e . lii thle dark the P howl iod e
passePs very little current so the applied voltage is dropped across it. When I lie 1 i'otodiode is illuminated it
produices a current which charges the FLC and swit chles it to lie ON state. Th le FLC mnay be switchecd
OFlF by reversing the polarity of the applied bias. The phiotodiode is then under forward bias and conducts
so that the applied voltage is dropped across the FLC.

InI Figure 31i the FLC is again depicted as a capacitor in parallel wvith a resistor, but here the phiotosen-
sor is a photocond uctor. In the dark the photocond uctor is Iiighilv resis.tive so that lie left side of thle FLC
is charged to V+ throuthe reitrR.\hi iepooohuto sillinated its resistance is reduced,
pulling the FIX to V-. When the FIX becomes sufficiently Charged it!; sateI Is sw\itCcd ON. The IIs
switched OFF1 by terminating the Illuiminationi of the phiotocondui: tor, alov\%iiig thle resistor It to once again
pull the FLC to V+.

VIN

-~R FLC

FLC

a-Si:H photodiode a -S i:H
L ~ Photoconductor L..

Figure 3a. Photodiode configuration. Figure 3b. Phmotoconductor configuration.

V-
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Tile photodiode permits the FLC to be switched OFF by applyvic aI forv.-rd puk an ee dn-

not require a third element (such as a resistor) to have acces.s to the [l'l ixe Therefore the entire FL.C-
photodiode array miav he contin uous, non-patterned layers. WVith th lienht rwoiiil it or thle lLC mnay not be

switched OFF simiply by reversing the bias because, if thec plicioronduct r ii< IIT1e dark, thel applie-I

volta-ge will drop across it rather than the FLC. Therefore a discrete resistor mnust provide a voltage divider

to each pixel, as shown in Figure 3h. This requires a. photolithograpliy step in tlic Fabrication of the device
to provide a resistor for each pixel. Alternative schemes Include (i) fornm mu a di ,ributed resistor in a

lateral device [161, (11) switching OFF individual pixels oii the entire array Lv dllutninating the phiotocon-
ductor while reversing the bias, and (iii) providing two photoconductor eipmnel~tr for each pixel, one puiling
thle VFLC to V"+ to switch it ON and one pulling the FLC to V- to sw-itch it OFF.

Figures 4a and 4b show edge-on views of the photodiode and photoconductor reflection-mode devices.

An a-Sill p-i-n layer is deposited on Sno-coated glass to form the photodiole. A reilector separates thle

read beam from the write beam. If it is an insulating layer, thle photosense'r is capacitively Coupled to tile

FLC. The FLC is sandwiched between tile retlector and indium tinl Oxide Io'r) (oared-( ass. Trhe photo-

conductor is formed by providing an a-Si:lI1i-layer with two ni-layers for ohiiiic contact. In Figure -11b a p~at-

terned device is shown in which a discreet resistor is connected to each pixel.

IWrite Beam

Glass
___ ___ ___ ___ ___ ___ ___ ___ __ SnO-,

a-Si:H
fl -. - - - Reflector

FLC
____ ____ ___ ____ ____ ___ ITO

Glass

tRead Beam

Figure 4a. Phiotodiode reflection-iaode SLM.
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IWrite Beam

Glass
SnO 

2
a-Si:H Insulator SO

_ R e s i st..... Resistor

'-Retlective Metal FLC

ITO

Glass

l Read Beam

Figure 4b. Photoconductor reflection-mode SLM.

Response Time

For each configuration there are three factors which may limit the response of the device: the
required to charge the FLC, the intrinsic response time of the photosensor and the intrinsic switching
of tle "I.C. Since the switching time is inversely proportional to the polarization P, from Equation
k,'.!rt "LC switching time determines P and hence the required charge. For example, the charge req
t,) rewerse the state of the FLC in 1 .sec with 10 volts applied is 4 x 10- 6 C/c 2 . For switching i
,:t'.,.r thAll 10) Lsec the polarization charge becomes much less than the charge required by the geonr
. :!.1c of the FLC and the photosensor. This capacitance is approximately 7nF/cm 2. The value c

>-tor is very large, so that the leakage current is negligible.

Sr,'1,1red to charge the FLC depends upon the illumination intensity and the characterist
,r For the reverse-biased photodiode, each absorbed photon produces one electron to cl

1, :TIrate the charge to switch the FLC in 10 ixsec requires an illumination intensi
. { /c m 2

. A 30 msec cycle time, as would be required in a display application, v
2'.'.': Ill 'I"mination. The response time of the reverse biased a-Sill photodiode itself

. ned r a reverse bias of several volts this time is under I psec [17], and ther
tim e of the devices.

,h absorbed photon produces an electron which may traverse the c
S:.;:.. ,-ronductive gain results in much more charge per photon than in th,

e , 1n',itv of 3 j\V/c1in 2 should provide ample charge to switch the
. .Ili require an intensity less than I j±V/cm i2 . The response ti
. -,r, is subIstantial. It can vary from microseconds to hundr(

e ; onditions of the a-ill [18]. Unless the photoconduc
li'mig factor in the response of a photoaddressed SI

\ x \ .,
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Conclusions

The combination of a ferroelectric liquid crystal and an a-Si:l1 photosensor provides the potential for a
high speed photoaddressed spatial light modulator. The ferroelectric liquid crystal is capable of
microsecond switching when it is provided with sufficient charge. An a-Si:1 photodiode can provide 0,.is
charge and response time, but it requires high illumination intensities. An a-Si:l1 photoconductor can pro-
vide the charge under lower illumination intensities, but the photoconductor response time may he a limi-
tation.
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Low Loss Polarization-Based Optical Logic Gates
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The gate design reported here is an outgrowth of a study of the use of optical computing for artificial
intelligence.1 ,2 The particLlar area chosen for study was mathematical resolution,3,4 a method of
reasoning using boolean algebra. In common with other non-arithmetic uses of optical computing, the
operations involved in the process of mathematical resolution require the cascading of multiple levels of
logic. For example, the basic operation in resolution, resolvent formation, requires on the order of Iog2 n
levels of logic to validate the resolvent of two clauses each containing n terms. Since in a real system, n
might easily be 1024, and each level of logic might require two levels of optical gates, on the order of 20
gates might have to be cascaded in order to generate an output.

If logic levels are encoded as light polarization, it is possible to perform these operations without
dissipative losses at each logic level. We are modeling the use of ferroelectric liquid crystals (FLC) 5- 7 to do
these operations. The gate makes use of the polarization rotation propety of FLC devices to perform the
boolean "and" or "or" functions for data represented using differing light polarizations. The architecture is
suited for large systems of boolean variables in which data must be processed in parallel. Efficient use is
made of optical components in that only the liquid crystal devices and photodetectors require an internal
array structure. The remaining devices are image preserving, and only one optical element is required at
each step, regardless of the size of the data array being processed. The array structure of the
photodetectors and FLC elements requires only local coupling, with each FLC connected to an
immediately adjacent detector. This would facilitate the layout of entire matrices of gates. The parallel
nature of the process, combined with the high speed of ferroelectric devices, allows the system to operate
at rates comparable to electronic processors. The optical gate presented is the kernel of a larger system
which includes data storage and control. Because of the general applicability of the gate design, it will be
presented separately here. The larger system will be presented at a later date.

The fundamental properties of a cascadable gate are well known. The inputs and outputs of the gate
must be spatially equivalent (same area, same collimation), optically equivalent (same frequency, same
coherence, same polarization) and either the gate must regenerate amplitude, or losses must be small
enough that a reasonable number of gates can be cascaded before losses become unacceptable. The
present design satisfies all these criteria.

Input to the gate is in the form of linearly polarized light. For a two-input gate, the inputs are presented
spatially adjacent, as either horizontally or vertically polarized light. The pair of inputs passes through a
birefringent crystal. The crystal separates the horizontal and vertical components of each input (in the
absence of polarization noise, each input will contain only one polarization). The horizontal components of
both inputs impinge on a single semi-transparent photodetector, which intercepts a small fraction of the
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incident light. The resistance change of the photoconductive detector is used to change the voltage
applied to a single ferroelectric liquid crystal located in the path of both of the vertically polarized input
components. If no light impinges on the photodetector, the FLC does not rotate light passing through it.
If light hits the photodetector, the FLC performs a 90 degree rotation on light passing through it. Since
only vertically polarized light passes through the FLC, if there is no horizontal light on the photodetector,
the gate output is vertically polarized. If either input is horizontally polarized, the FLC will ensure that any
vertical component of the other input will be shifted to horizontal. In addition, almost all of the horizontal
input is passed through the system, since only a small portion is used to drive the photodetector.

The output of the gate occupies four times the spatial area of the input, and potentially is distributed in
different ways, depending on the input combinations. The size is reduced to match the original by a
converging-diverging lens pair which effects a 2:1 scale change in both dimensions. In an array of gates,
only one lens pair is needed for the entire system, so this does not add excessive complexity. The spatial
distribution of the light within the output pattern is not significant because subsequent gates are uniformly
sensitive over their entire input window.

A diagram of the gate is shown in Figure 1. The input light enter at station A. A birefringent crystal
separates the light into horizontally and vertically polarized components as shown at station B. An
FLC-detector pair transmits the horizontal light, and may or may not rotate the vertical light to horizontal
This is shown at station C. A converging-diverging lens pair at station C shrinks the output pattern to be
the same size as the input. The output at station D is ready for deflection into further gates.

The gate is essentially nonabsorptive, with the only intentional light absorption occuring in the
photodetector. This is deliberately inefficient, with the majority of the input light passing through to the
output. The gate does require electric power to drive the FLC, but the FLC is very high impedance, and
the switching energy is very low, on the order of 0.8 picojoules for a typical gate. The electrical circuit of
the gate is shown in Figure 2.

Our mathematical resolution system will use monolithic arrays of optical gales. Each gate array will
consist of a crystal with a matrix of FLC's and detectors deposited on it, and a single converging-diverging
lens pair for the entire array. Our present experimental results are drawn from a proof-of-concept model
fabricated on an optical bench. This model is shown in Figure 3.

Our present work involves the detailed simulation of the physics of the monolithic gate array. This will
then be applied to a simulation of the larger artificial intelligence problem while fabrication of a sample array
is begun.

2



A) TOP VIEW OF CIRCUIT LAYOUT

r- BIREFRINGENT
CRYSTAL FLC LI L2

INPUTI

H

DETECTOR

STATION A STATION B STATION C STATION D

B) AXIAL VIEW OF SIGNAL PATHII
LEFT RIGHT

V V V

V V 14

H H H

I I

H H H

V H

II I

H H H

H H H

FIGURE 1

3



\PHOTOCONDUCTOR

-V FIGURE 2

POLARIZING 90% -10%5 -%
BEAM SPLITTER BEAM SPLITTER BEA SPL TER

INPUT B.

V -- RT C A L 1% 1 DETECTOR

FLO
FIGURE 3

1. Schmidt, R. A. and W. T. Cathey, "Optical Implemlentations of Mathematical Resolution", Applip
O~tics, March 1987 (to be published).

2. Schmidt, R. A. and W. T. Cathey, "Optical Representations lor Artificial Intelligence Problems",
SPIE Proceedings, Vol. 625, p. 226, 1986.

3. Nilsson, N. , Principles of Artificial Intelligenc , Tioga, 1980
4. Winston, P. H., Articial Intelliaence, Addison Wesley, 1984.
5. Clark, N. A. and S. T. Lagerwall, "Submicrosecond Bistable Electro Optic Switching in Liquid

Crystals", Applied Physics Letter, 36(1 1), June 1980.
6. Clark, N. A. and S. T. Lagerwaff, "Physics of Ferroelectric Fluids the Discovery of a Hfigh-Speed

Elect ro-Optic Switching Process in Liquid Crystals", incnP~.~ (- r on~jc Mattr cs~~g.
Vol. 4, 1981.

7. Handschy, M. A. and N. A. Clark, "Stroboscopic MicrosIcopy of Fa"It I lectro Optic1 switching In

Ferroelectric Smectic C Liquid Cryslas,jw hirI otto!. 41(l). July 19832

4



3.~kPUt ~ ~UWU~ WVIV~f*'AF ~ 0 0' o~'.' ~0 V~ .0 0 bI.~i .l~ ~'W ~ .. - U -

S 
=

- V 0 V

a a a - 0 A 0 0 -

a 3 - U a -' a - -

a 3. - 0 a' at o N - -

0 > 0 6 CI 6$ -. - C C 6

~ 0 ~ *
a'

3 ~ a - a a, a' u - 0 0 0 U U 0

'. -. "' C I. 0 0 V a

C 0 0 3 0. u a - 0 0 ' 0

- 0 C 0 - 0 6 U' 0 - 0$ - - S a -. 0 V .J 0 -

* C 0 - - 0 C C' - S ii W P - 0 0. - - 0 0 =
a 0 - a 0 a - - w V 6 .0 0 U 6 0 6 5 a 0 0' o

0 - .0 0 0 0 01 0 .0 6! - 0 - 0 .0 - .0

U Q U 0 S S 01 - 6 - - U S -

o 0 6 - - - -~ C C U - a -0 ~ 0 V

U 0. U 0 -" U - 3 - 0~ C V - S 0 o
a fl 0 U 2 - - - 0 0 - - 0 6 0 - U

* - 0. fl - e a 0 - - s
0 .0 U 0 6 3 A 

p

a - - C 0. 0 - S C - £ 0 - 6 9 0. 0 .0 9

0 9 0 0 6 0 0 ~* W 0 -. - 6 0 N 0 - U 6 *

- 5 3 U C 0~ 0 0 ~ 0 3 C U - 0 0 S 0 5 0 0

- 0 U .0 0 - U C - U - 0 U C S V U 0 3
* - - U & - ~ V 6 0 - C - V C

V 0 0 0 .~ V V C - 0 0

a * a ~ ~ -

0 - 0 -

U 6 0 - -. - C 0 5 9 C 3 - 6 0 V

U - o a 0 0 0 - C - - - - 9 0 a V * U
V a C - U 3 C .0 0 U 0. 0 V S a 6 0 3 0 * - -

0 0 6 0 6 .0 0 U Ud C 0 0 6

* - V 0 V C - - C S U U - N

* S * V a - S. 3 5 S V 0 - 0 0 a 0 a
- o a a - ta a p. u 0 0 - - - 0 .0 0 0 0'

U -. - U U - U - - - - 0 0 0 C V C U U I - - 6

- 0 0 0 0 S - 0 U C U pp 0 5 0 - 0 0 £ .0 -

C - 0 0 - 0 - 6 0 0 0 3 U U S - 5 5 -

- - V - U - S - U - - - C 0 0 a 6 V

a a a 5 0 V 0 0 0 .0 0 - - - 0 U 0 U U -

- a U - C a 0. - 0. V ~ 0 0 0 0 0 - 6 0 0

o ~. a - a a a 9 0 0 - - a 0U ~06 7

* a a 1. 0 6 - S - 0 0 6 0 - 0 - -

- - U - 3 U 0 6 - 6 0 C - C - 0 .0 -

O U 0 0 5 - 'A - - - 0 0 - - 0 - - N V

0 a .0 - 0 - 0 0 V 9 0 3. 0 - 0 - V 0 0 U

* - 0 - - * 0 V 0 6 - 0 .0 0 0 - U - 0 U 0 - - -

* - - 0 - C S C C U 0 0 6 - C S C S U S -

o z a a a S C - 0 U 0 - 0 9 0 0 .0 0 - 6 0 1

- 0. U U S - 3. - - - 0 U 0 - - C 0 .0 - - a
- U 5 S - V * OP 0. - 0 0. 6 0

i U - - - 0 0 3. - C a * 0

0 - - C - - S - - 0 0 0 0 0

- C 0 U 0 0 U 0 C OP - 0 - - U V

* a U S U - 0 C a 0 0 U a 0 0 - - - 0 0

3 0 5 S - 0 - - 0 C S 6 0 .0 -

* 0 5 U 0 0 0 0 V S V - 0 0 - .0 N 0 - S
O .0 (dI 0. V C 0. C 6 0 a - - - V -

- 0 - 0 U 0 C 0 0 - U U 3

* 3. U 3. - U - 0 3 S - - 3 9 C C -

- S - N 0 6 C C 6 U - - U

0 0 U - S - U - U - 0 0 0

U 0 3 0 6 0 - 6 U C S 0. 5 U 0

- a 0 - 0 N 3 6 - 0 0 3 - - S 0 5

hO 0 - - U C 0 S - *.~9* S
0 6 0 C C - S C 0 0. - - 0 P. 0

0. 0 4 3 0 C 0 0 0 - 0

0 6 0 0 0 a 0 5 - o a
- U 0 - V - - C C 3. 0 0 0 0 * 3
0 - U 5 6 0 0 - U U 0 0 0 U - - 0

U S C 0 0 0 - 0 C 3 0 0 - 4 V V 0 0. 0 0

- 0 0 - C U C 0 5 U 0 a - S - - U S

- 0 5 U - - U 0. 09 - - - 0 0 - - 08 U U 0. C U

a - - o 0. a 0 U - a~0~0.0 C 0 6 0 0 C

- 0 V U 0 04 U - - 3 0 0. 0 0 C 0 6 - - - 0 0. I-. P..

9 4-.

0
S -3. 2

- - 0 0
- p .0 -
3 U 6

5 6
V U 0 -
0 a 0 0
- 0 - U 0 0
O C .. 09 Oh 3.
0 V C o a U
* 0 U U - 0
0 0 5 0 - U

- -~ 0 3 0 0 o
0. 3. C 0 - 0 Sa -

- 0 U V 3 0
- 0 0 0 0 -

* 0 0 - a

- 0 a 0 0 -
C C - U - 0

N w a 0 0 0 U
* 3. - S 5 3

U V S S C 0 -
- - a - S

- 04 0 V - C U
0 0 a 3 -

3. - U .' 0 0 a
* 0 - C - V C 0

- a 2 'J U C 0 3 -

a - C 0. 04 V V U

pp a 6 2 0 V 0 0 -

o I 2 0 0 0 U 0

o 0 U - S a 0 -
* - V - 0 C C

S C U 0 5 U V

o 3. 5 0 6 4- 0

* 'A - 5 0 6 a
3 2 0 a o

w a ..

0 V C 2 C 0 0o 0 C 6 0 -
- 6 a 0. .j 0. hO U U C

a p 0 0 - 0 0 -

U - 0. 0 U - -

U C U - V 0 - 3
o 0 0. 5 0 0 0 C S

U i 0 0 C

- U C a C a V

* S U - 3. 5 - V - 0

U V 0

- - - C 'A 0 U U 0 0 0

- 0 0 0 N - U 0 a a 0
* 0

0. 7 6 V * a V 0 a
0 = - a 0 6 - 0

U U

V 0 0 0 S 0 6
0 U 2 - - 0 0'

5 0 0 N U -
* 0 U 0 .-' U

3. - 0

U C 0. P.. - U s
C 0 U 0 0 U - 0 a
0 5 0 U U 5

- 0 V 6 3. U S - -
- 0 C 0 0 - U

* 6 9 P.. - - V 0 0

N U = a u U - a
- U U 0 9 0 0 0 0

U - 0 0 V U 3 0 - 0.
0 - 6 0

a 0 0 U ~ 3
0 0 0

a. 3 U' U 3. 4 p. -

I

4-

a - - % .*.*. ****', .~ , . . -. - . - . * .. . .



c 0 16

- 8 fa )

00 4 4 0 4 0 A .

- a 0 4 . a - 3 U -

0 c a 0 4 4 - 0 - 3 -- 4

a-~ ~~ ~ 444 100 - U

C~ U 4 0 6 - .4 V . .- a

o~ ~ I., 4 4 t U at UV

- c I v4 0! w4 4o c4 w0 t - 0 44c

44~ ~~~~ o4 . 4 4 4

- ~ ~~~~~ x4 0 4 U U - - 44 -4 0

a !! .4 44 Vt ME0C V U a - 4

0.- -c U 2 1 -m 41 Ui 44 -

at - . a . 40 a a w 0 v 4 a 0 a -

.4~~c .4 "1 M 4 C U U * 0 4 C S 4 ) - 4

U 441 0 , A N U . 4 . 4 44
0 44 44 44- .4 4 0 4 at * . a 4 0 4.

44 -.- 0 0. > 4 0 . 4 A . 4 4 40 4
V 4 ' U 0 U 4 4 4 .4 44 44 U - .4.o

44 - 4 4 4. . V . 4 CU 4
0 4 4 . 4 4 4 0 U.

.4 0 4- 4 5 4 0 4 .4 4 > 0 Q 4

44~ 44 Z4 t4 lo 0 0 4 44 4 )1 -
U 4 . 4 . 4 . 4 4 . 0 .

U~ ~~~~ ~~ v40 0 V a a - 4 4 44U U . 44 t .
0 0 0 U 4 ~ 44. a 4 6 U C 4 -0 >

.4 . 0 4 4' 44 - - 0 . at 4 . .4 44 U) Z U .

U) * 7Z '6 >. o 4 4 4 . 4 Ua
44U0 44

0 ~~~ ~~ o . . 4 . 4 0 4 4 4 ' 3 Ua
44~ ~~~ ~~~~ 44 V 0 . ' 0 0 V 4 4 4 - 4

0 44 44 t 44.4 4 0 4 o 44 . .4 0. . .. U . 0 4 Z
0~~7 o4 . 4 6 U . 4 - . 4a 5 4 00 4



6 - a- ~V U
a. a. 0 C V N - - 0 U 4. a. 0

a - N - C 0 - V 0 - - 0
* 0 * a. V N N * a -. 0 - -, a. a a

Na. - a.~ * a. 0 -a CC. - -

O N - - L. 5 0 0 0 - a. C - - -. - - 6 0

C S - C N - - a. 6 0. 0 0 V - a. 0

a a 0 41 .0 - - N - - S 4. - C C

0 V C 0 - 6 N U - - C 0 0 N S 0 C N a o U

* 4~ S N C - a. a a a. * - C S
0 6 6 - a .. a - 6 - 0 6 C N a. a. 0 - V 5 a a. -

- a a a N a~ - 3 - a a 0 - - C a
- C 0 N 0 0 N - - a 0 a U ~ 0 0 -
- N N *V I. 3 6. S N a - a. £ N .. - 0 - a. 48 a.
0 N V -. 0 N - a . 0. - N S - - 0 .0

* 3 0 C - - V - 08 a. a. S V N a o
0 - S C 0 - - . 2 C - C .0 0 C 0 4. C

0:0 00 N 0.6066 - a

* S S - S a. * a. C. a a. a a a N - -

- * - 0 N U.. C V I- 4. 3
~ * ~ * - ~ - a. -

0 V C S N 0 C U C - S * N -
N S C C 44 N - 6 3 N U a a~ 6 .0 -

V N - 0 0 a C S 0 a S a w N * a 3
* V C - a a 0 C a. N - U -

* 4 0 48 5 0 48 I.' C 6 S -. j
N - 0 V -. C S I.. - 0 a. N S C N

- a - - N V - N S S 0 41 a C S - a a. a. -.
o N 0 a. C a 0 S 0 6 6. C 0 *V 4.

N C - 4. C N 6 a. H 0 a a. V 6. 0 5 N 3 * a

~ C ~ ~ ; : C 6 N a C C - -, a. S
o a 3 - a. 0 5. - g~ N . 0 C a a.

a C - a 0 - a u a. - = a ~ a - a. a
S - S - 5 C N S. .J C - *4 S C S -J C .4 6 a o a. 5.

o - e S C a. ~ ~ a.. a a. a. a. 0 ... a. a a - .0a. S -
6. 3 0 N S N -

N C 0 0 U 0 C - .2 ~ N 0 : ~ C a. N a *
C N N) U N C S C 0 C 0 a a 0 0 a. - 3

0 - a N * N S - C - s a a a ~. , a.
- .0 0 - - * 0 0 44 N C a a a - a N a -- - -

- a N 0 a C N. 4. C N 0 0 N C *0 - 44

0 0 0 - N Cd .0 C - S * a. - a a 6 a. N 0
N U a. C V -4 - 6.) a - 0 C o - 0 -

- a V .Ja ~ -0 a. V a U a. C a. a 0 N V C . a U -.
6 - N a. - S C N. N 5 0 6) a N C 04 4. - 48 C S

O .0 C S U N C * 0 a. 0 - N a a.. -. S a. - U a.
- 0 U N C C C .0 a.. a C 6 0 a a N C 0 5 - - U
0 C N N 0 C U a. 0 6) 6 5 5 3 a 6 5 44 a -
a a - - - C 3 0 a. a V 44 2 0 4. 0 C a. V -

0 3 C C U 4- N a. N U C 6 6 .0 C a 0 a 6 - U
- S U - a S S 0 a S -. C 0 0 0 - -
- 0 U N 0 ~0 U.' 66 N 48 a. 0 -

- a N 6 *4 0 N V V 6 0 U 6 0 0 4.. - - C a. a 5 4. -
C a. C N. C a. 6 C N N a 5 6 a. N N N a o a. .0 - N a a a. a
a a a .~ a N N. S N N U C 0 4. 0 C N -
a C a -. a N S 5 0 a a a. * t. a. 44 a.
C S C - a a. 0 0 N N 0 a a. a. S - N. a. U 4.

S - - - 0 0 a 5 0 N , a. V U a - C U 3 - -. 6 a -
- 5 4. a a 48 6 C a. a 44 C 0 - 3 a. V -

a. a 0 C 0 0 0 0 N N - N = 0 C 0 6. V -. 0
C o - a. - 0 - .0 6 0 U C 4. 0. N V -.

- - - 6 - a. 0 C C. a S C - N 48 0 a. - N. a
N 0 V 3 0 6 U N C - N 0 C 6 0 C

a - C 6 C S 0 0 54 0 3 - - a a
o a. 0 0 0 0 U 6 N U 6 C N - a a - a,

a - a. a. 44 3 aJ a N 6 a 6 0 - a - a S N

a. N 6 C V a. U a a a S - U - s a ... 4. a .a. -
a 48 4. 0 a S V C 0 - - S---------a a. - - - -
- 6 41 N 6--------0 0 N U 0 * 3 0 - V V V a
a a - - C N a C-----------a.. 0 6 0 2 a a S

O - 6 6 a. 0 a o 4 0 a. U a. - a -.. a. - U - 6 6 a.
N 0 a a S N N C N C a a. a. 6 4. a. - a a. - -
- a. - - a a. a a. - - oe a - -v s N £ - 0 4 3 0 C

C C 0 0 - C a.. C 0 0 a N a 0 a. a. 6 - 6. S - -
- - a a a V C s a - * C a U K Ca .0 a. V - a a. a

S.-
S C 0 V V C N 0

S a. C a. 0 0 6 N r
V a.. 0 C a. V C 44 6
0 - 0 6 - - 0 4. C N 48 - a -
a , a - - a - 6 C 0 a' 0 54 0. -

N----------------a. - S a.
O - 0 0 3 - - -. 0 N - a 4. - C a.
5 6 V - a 6 0 6 - U U N 4. - - - C -
a 0 6 - 0 0 4. 44 o a C U C .0 - 0 a -

- - - - N -. .0 0 N - 0 a N 5 U S
0 - 6 0 6) 0 N C 4. 4. 48 U 0

- a. a. a. a 6 a V 6 S S N 6 N 6 ~ - -
0 S .0 0 4. a. C 4. - - a.

- N C C 0 N C - - C
a a .o - C S - C - a -
S - a. a 4..-------a a a a a

0 - 0 N 0 0 N C a. a.
0 V - a. - - - S C .. S a. a. - -

V C a a. a. 4. C N U 0 - - - - a
0 6 3 0 S - 0 0 4 0 0 - - a. - -
* - - - N - 0 V - 0 5 - a

a - o a. a - a. C 6 - C a.
O a C 6 V - N 0 - - - C 0 6 5
- 0 5 0 44 V C V 6 6
I. - . U N C N C - 0 C C -
a a. a - V C C V 0 6 - 3 - - -
a - 0 C C 0 6 0 6 - N - N 0 0 0

* N
6

66a a. 48 - - a C V N
C - - N 1. - - C 6 N S N -

Na6a a 3 S B N. 0 C - .0 6
- 0 6 - S N 5 5 C S 5 5 - a
C N - a. 0 6.6 * a a 6 - a

a a. a a. 0 N a a a a C N 0 a. - - -
* a a a. - 0 - S 44 0 s a - 4. C

* C N 0 0 0 C .0 a. a. a.
0 V C S S a. 0 - a. - a
6 5 4. - 3 N a 0 a C 0 0 -
- - N 0 0 - 48 4. 0 3
0 4. 0 5 44 0 C 0 0 C - C - 44 a 4.
6 0 0 - C - 6 C a - - 0 - a
a - C - - " ' a.

a. 6 U 5 - a 6 N 4.. a o . -
C C C - S - a. C a C 0 - - a. -

S 44 0 - - N N 6
a V a - - S V 4. C C V S
- a. C a C - - C 0 0 6 0 4- a. a

C a 0 5 6 . N - - 0 C S

C 6 - N a C * C a - C N -
6 3 a - C 48 0 - 0 6 3 - C
- - - 6 48 - 0, 0 4. V C
C 3 - a 0 - - a ~ a a a. a - C
* a o 0 C - a- C 0 a a. C a -

C 48 V 0 48 - 6 C N -
0 - - 0 V 4. - - N -. - - 0 . a.

- - - - N N V a 0 - - a. -
- -. 0 3 S

C 0 0 a a.
- - 48 48

a. 0 0 - 0 C

S . - . .
*0 -

'N -. -



IMO 0 4
0 a 06 a

a .4 a
- - * -

* A a - c o

*-V w 4 a

A~~~: a I a V a .

a S. a a.

'o aa I

- ~ ~~~ a z sIS

o ~ I c70 - 4 . - 6

- a a am - - -



o7n

>1o

FLC Matrix Arrays"
HeNe Laser

A B Optical
Controller

Figure 1. (a) Electrooptic action of ferroelectric liquid crystal (PLC)

element. The FLC is in the form of a thin slab between transparent

conductive electrode plates (not shown). The liquid crystal's smectic

layers make an angle 0. to the horizontal. Also shown Is the optic axis

direction (director) fi. the ferroelectric polarization P, and normally

incident light rays with polarizations i vertical and horizontal. In the

state shown to the left with ni vertical, selected by "positive" applied

voltage, the incident light is transmitted with polarization unchanged. in

the sta'e shown to the right with fi at 2t z 45o to vertical, selected bv

"negative" applied voltage, the polarization of either incident rov is

ro', ted by 90. b) Two arrays of FLC elements arranged to make XOR and

XNOR optical logic gates. The controller is a large, single element.
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-

Figure 2. Truth table for XOR and XNOR functions. For inputs A and B and the

optical controller, the arrows represent the direction of the FLC optic

axis. For the output, the arrows represent the polarization direction.

(a) XOR. (b) Switching the controller reverses the output polarizations.

yielding the XNOR function.
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